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For	Jim	Lovelock



It	always	bothers	me	that,	according	to	the	laws	as	we	understand	them	today,	it	takes	a
computing	machine	an	infinite	number	of	logical	operations	to	figure	out	what	goes	on	in
no	matter	how	tiny	a	region	of	space,	and	no	matter	how	tiny	a	region	of	time.	How	can
all	that	be	going	on	in	that	tiny	space?	Why	should	it	take	an	infinite	amount	of	logic	to
figure	out	what	one	tiny	piece	of	space/time	is	going	to	do?	So	I	have	often	made	the
hypothesis	that	ultimately	physics	will	not	require	a	mathematical	statement,	that	in	the
end	the	machinery	will	be	revealed,	and	the	laws	will	turn	out	to	be	simple,	like	the
chequer	board	with	all	its	apparent	complexities.

Richard	Feynman
The	Character	of	Physical	Law

The	simplicity	of	nature	is	not	to	be	measured	by	that	of	our	conceptions.	Infinitely
varied	in	its	effects,	nature	is	simple	only	in	its	causes,	and	its	economy	consists	in
producing	a	great	number	of	phenomena,	often	very	complicated,	by	means	of	a	small
number	of	general	laws.

Pierre	Laplace
1749–1827
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INTRODUCTION

The	Simplicity	of	Complexity

The	world	around	us	seems	to	be	a	complex	place.	Although	there	are
some	simple	truths	that	seem	to	be	eternal	(apples	always	fall	to	the
ground,	not	to	the	sky;	the	Sun	rises	in	the	east,	never	in	the	west),	our
lives,	in	spite	of	modern	technology,	are	still,	all	too	often,	at	the	mercy
of	complicated	processes	that	produce	dramatic	changes	out	of	the	blue.
Weather	forecasting	is	still	as	much	an	art	as	a	science;	earthquakes	and
volcanic	eruptions	strike	unpredictably,	and	seemingly	at	random;	stock-
market	fluctuations	continue	to	produce	boom	and	bust	with	no	obvious
pattern	to	them.	From	the	time	of	Galileo	(in	round	numbers,	the
beginning	of	the	seventeenth	century)	science	made	progress	–	enormous
progress	–	largely	by	ignoring	these	complexities,	and	focusing	on	the
simple	questions,	looking	to	explain	why	apples	fall	to	the	ground,	and
why	the	Sun	rises	in	the	east.	Progress	was	so	spectacular,	indeed,	that
by	about	the	middle	of	the	twentieth	century	all	the	simple	questions
had	been	answered.	Concepts	such	as	the	general	theory	of	relativity	and
quantum	mechanics	explained	the	overall	workings	of	the	Universe	on
the	very	large	and	very	small	scales	respectively,	while	the	discovery	of
the	structure	of	DNA	and	the	way	in	which	it	is	copied	from	generation
to	generation	made	life	itself,	and	evolution,	seem	simple	at	the
molecular	level.	And	yet,	the	complexity	of	the	world	at	the	human	level
–	at	the	level	of	life	–	remained.	The	most	interesting	question	of	all,	the
question	of	how	life	could	have	emerged	from	non-life,	remained



question	of	how	life	could	have	emerged	from	non-life,	remained
unanswered.

It	is	no	surprise	that	the	most	complex	features	of	the	Universe,
which	proved	most	reluctant	to	yield	to	the	traditional	methods	of
scientific	investigation,	should	exist	on	our	scale.	Indeed,	we	may	be	the
most	complex	things	there	are	in	the	Universe.	The	reason	is	that	on
smaller	scales	entities	such	as	individual	atoms	behave	in	a	relatively
simple	way	in	their	one-to-one	interactions,	and	that	complicated	and
interesting	things	are	produced	when	many	atoms	are	linked	together	in
complicated	and	interesting	ways,	to	make	things	like	people.	But	this
process	cannot	continue	indefinitely,	since	if	more	and	more	atoms	are
joined	together,	their	total	mass	increases	to	the	point	where	gravity
crushes	all	the	interesting	structure	out	of	existence.	An	atom,	or	even	a
simple	molecule	like	water,	is	simpler	than	a	human	being	because	it	has
little	internal	structure;	a	star,	or	the	interior	of	a	planet,	is	simpler	than
a	human	being	because	gravity	crushes	any	structure	out	of	existence.
And	that	is	why	science	can	tell	us	more	about	the	behaviour	of	atoms
and	the	internal	workings	of	the	stars	than	it	can	about	the	way	people
behave.

As	the	simple	problems	yielded	to	investigation,	it	was	natural	that
some	scientists	should	try	to	tackle	the	more	difficult	puzzles	associated
with	complex	systems.	As	we	shall	see,	although	some	valiant	individual
assaults	on	these	puzzles	had	been	made	earlier,	it	only	really	became
possible	to	begin	to	understand	the	workings	of	the	world	on	the
complex	human	scale	in	the	1960s,	with	the	advent	of	powerful	and	fast
(by	the	standards	of	those	days)	electronic	computers.	These	new
developments	began	to	emerge	into	the	awareness	of	a	wider	public	in



the	middle	to	late	1980s,	with	the	publication	first	of	the	now	classic
book	Order	out	of	Chaos,	by	Ilya	Prigogine	and	Isabelle	Stengers,	and
then	of	James	Gleick’s	Chaos.	At	the	time,	I	was	busily	writing	about	the
great	triumphs	of	the	old	science,	and	although	I	occasionally	tried	to
get	to	grips	with	the	ideas	of	chaos	and	complexity,	I	found	that	doing	so
made	my	head	hurt,	so	mostly	I	kept	my	distance.	But	after	about	ten
years	of	waiting	either	for	chaos	theory	to	go	away	or	for	someone	to
write	a	book	explaining	it	in	language	I	could	understand,	I	decided	that
if	no	one	else	was	going	to	explain	it	in	clear	language,	then	I	would
have	to.	Which	meant	that	I	had	to	read	everything	I	could	find	on	the
subject	and	try	to	understand	it	myself.	It	was	while	doing	this	that	I
discovered	that	it	wasn’t	so	difficult	after	all.	Both	relativity	theory	and
quantum	theory	were	regarded,	when	new,	as	ideas	too	difficult	for
anyone	except	the	experts	to	understand	–	but	both	are	based	on	simple
ideas	which	are	intelligible	to	the	lay	person	willing	to	take	the
mathematics	on	trust.	I	ought	not	to	have	been	surprised	to	find	that	the
same	is	true	of	chaos	and	complexity	–	but	I	was,	and	I	clearly	recall	the
moment	when	I	finally	got	the	message	about	what	it	was	all	about.	As	I
understood	it,	what	really	mattered	was	simply	that	some	systems
(‘system’	is	just	a	jargon	word	for	anything,	like	a	swinging	pendulum,
or	the	Solar	System,	or	water	dripping	from	a	tap)	are	very	sensitive	to
their	starting	conditions,	so	that	a	tiny	difference	in	the	initial	‘push’	you
give	them	causes	a	big	difference	in	where	they	end	up,	and	there	is
feedback,	so	that	what	a	system	does	affects	its	own	behaviour.	It
seemed	too	good	to	be	true	–	too	simple	to	be	true.	So	I	asked	the
cleverest	person	I	know,	Jim	Lovelock,	if	I	was	on	the	right	lines.	Was	it
really	true,	I	asked,	that	all	this	business	of	chaos	and	complexity	is



based	on	two	simple	ideas	–	the	sensitivity	of	a	system	to	its	starting
conditions,	and	feedback?	Yes,	he	replied,	that’s	all	there	is	to	it.

Now,	that’s	a	bit	like	saying	that	‘all	there	is’	to	the	special	theory	of
relativity	is	that	the	speed	of	light	is	the	same	for	all	observers.	It	is	true,
it	is	simple,	and	it	is	easy	to	grasp.	Nevertheless,	the	complexity	of	the
structure	built	on	that	simple	fact	is	staggering,	and	needs	some
mathematical	knowledge	to	appreciate	it	fully.	But	I	knew	from
experience	that	I	could	explain	the	essence	of	relativity	to	people	with
no	background	in	science,	and	the	realization	that	there	were	similar
simple	truths	underpinning	chaos	and	complexity	gave	me	confidence	to
try	to	do	the	same	in	that	area.	The	result	is	in	your	hands,	an	attempt	to
take	the	obvious	step	of	trying	to	explain	chaos	and	complexity	the
simple	way,	from	the	bottom	up	–	for	everybody.	The	great	insight	is
that	chaos	and	complexity	obey	simple	laws	–	essentially,	the	same
simple	laws	discovered	by	Isaac	Newton	more	than	three	hundred	years
ago.	Far	from	overturning	four	centuries	of	scientific	endeavour,	as	some
accounts	would	lead	you	to	believe,	these	new	developments	show	how
the	long-established	scientific	understanding	of	simple	laws	can	explain
(although	not	predict)	the	seemingly	inexplicable	behaviour	of	weather
systems,	stock	markets,	earthquakes,	and	even	people.	As	we	hope	to
convince	you,	the	study	of	chaos	and	the	emergence	of	complexity	from
simple	systems	is	now	on	the	brink	of	explaining	the	origin	of	life	itself.
In	a	phrase	attributed	to	Murray	Gell-Mann,	but	echoing	the	speculation
of	Richard	Feynman	quoted	at	the	front	of	this	book,	the	complicated
behaviour	of	the	world	we	see	around	us	–	even	the	living	world	–	is

merely	‘surface	complexity	arising	out	of	deep	simplicity’.1	And	it	is	the
simplicity	that	underpins	complexity	that	is	the	theme	of	this	book.



John	Gribbin,
January	2003



1
Order	out	of	Chaos

Before	the	scientific	revolution	of	the	seventeenth	century,	the	world
seemed	to	be	ruled	by	chaos	in	a	quite	different	way	from	the	way	the
term	is	used	by	scientists	today,	but	in	the	same	way	that	most	people
still	apply	the	word.	There	was	no	suggestion	that	there	might	be	simple,
orderly	laws	underpinning	the	confusion	of	the	world,	and	the	nearest
anyone	came	to	offering	a	reason	for	the	behaviour	of	wind	and	weather,
the	occurrence	of	famines	or	the	orbits	of	the	planets,	was	that	they
resulted	from	the	whim	of	God,	or	the	gods.	Where	order	was	perceived
in	the	Universe,	it	was	attributed	to	the	response	of	physical	objects	to	a
need	for	harmony	and	order	to	be	preserved	wherever	possible	–	the
orbits	of	the	planets	and	the	Sun	around	the	Earth	(thought	to	be	at	the
centre	of	the	Universe)	were	supposed	to	be	circles,	because	circles	were
perfect;	things	fell	downwards	because	the	centre	of	the	Earth	was	at	the
centre	of	everything,	the	centre	of	symmetry	in	the	Universe,	and
therefore	the	most	desirable	place	to	be.	Even	when	the	philosopher
Aristarchos	of	Samos,	who	lived	in	the	third	century	BC,	dared	to	suggest
that	the	Earth	moved	around	the	Sun,	he	still	imagined	that	it	must
follow	a	circular	orbit.

These	examples	highlight	an	absolutely	crucial	difference	between
the	science	of	the	Ancients	and	the	science	of	post-Galilean	times.	The



Ancient	Greeks	were	superb	mathematicians,	and	in	particular	they	were
superb	geometers,	who	had	a	very	good	understanding	of	the
relationships	between	stationary	things.	This	geometry	had	its	roots	in
even	earlier	cultures,	of	course,	and	it	is	easy	to	imagine	how	this	first
science	may	have	arisen	out	of	the	practicalities	of	life	in	the	developing
agricultural	societies	of	pre-history,	through	the	problems	associated
with	building	houses	and	laying	out	towns,	and	the	need,	as	society
became	more	complicated,	to	divide	up	land	into	fields.	But	the	Ancients
had	no	understanding	at	all	of	how	things	move,	or	the	laws	of	motion.
You	have	only	to	look	at	how	puzzled	they	were	by	Zeno’s	famous
paradoxes,	such	as	the	soldier	who	can	never	be	killed	by	an	arrow.	If	he
runs	away,	then	by	the	time	the	arrow	reaches	the	position	he	was	in	he
has	moved;	in	the	time	it	takes	the	arrow	to	cover	that	extra	distance,	he
can	move	a	little	further;	and	so	on.

In	spite	of	the	existence	of	people	like	Aristarchos,	the	Earth-centred
Universe	remained	the	established	image	(what	scientists	would	now	call
a	‘model’)	even	after	Nicolaus	Copernicus	published	his	model	of	a	Sun-
centred	Universe	(but	one	still	based	on	circles)	in	1543.	His	book,	De
Revolutionibus	Orbium	Coelestrum,	had	been	essentially	completed	in
1530,	and	much	of	its	contents	were	widely	discussed	before
publication,	leading	Martin	Luther	to	comment	in	1539	that	‘This	fool
wishes	to	reverse	the	entire	science	of	astronomy;	but	sacred	Scripture
tells	us	that	Joshua	commanded	the	Sun	to	stand	still,	and	not	the	Earth.’
Responding	to	similar	criticisms,	Galileo	later	riposted:	‘The	Bible	shows
the	way	to	go	to	Heaven,	not	the	way	the	heavens	go.’	It	was	Galileo’s
contemporary,	Johannes	Kepler,	using	observations	painstakingly
compiled	by	Tycho	Brahe,	who	established,	for	those	with	open	eyes,



that	not	only	did	the	planet	Mars	move	round	the	Sun,	but	that	it	did	so
in	an	elliptical	orbit,	pulling	the	rug	from	under	the	notion	that	the	kind
of	circular	perfection	beloved	of	the	Ancient	Greeks	ruled	the	cosmos.

Even	to	people	who	know	little	about	science,	or	the	history	of
science,	Galileo	(who	lived	from	1564	to	1642)	is	famous	today	as	the
man	who	turned	one	of	the	first	telescopes	on	the	heavens,	found
evidence	to	support	the	Sun-centred	Copernican	model,	and	had	a	run-in
with	the	Catholic	Church,	which	led	to	his	conviction	for	heresy	and	the
suppression	of	his	books	in	Catholic	countries	–	which	(of	course)	led	to
them	selling	like	hot	cakes	everywhere	else.	But	he	did	much	more	than
this.	It	was	Galileo,	more	than	anyone,	who	laid	down	the	principles	of
the	scientific	method	of	investigation,	involving	comparing	theories	(or
models)	with	the	outcome	of	experiment	and	observation,	and	it	was
Galileo	who	first	got	to	grips	with	motion	in	a	scientific	way.

The	key	to	Galileo’s	work	on	motion	was	a	discovery	he	made	while
a	medical	student	in	Pisa	in	1583.	During	a	boring	sermon	in	the
cathedral	there,	he	watched	a	chandelier	swinging	to	and	fro,	and	timed
the	swing	with	his	pulse.	Galileo	realized	that	the	time	it	took	for	the
lamp	to	complete	one	swing	was	the	same	whether	it	swung	through	a
wide	arc	or	a	shallow	one,	and	later	experiments	showed	that	the	time
taken	for	a	pendulum	to	swing	depends	on	its	length,	not	on	how	far	it
swings.	This	is	the	basis	of	the	pendulum	clock,	but	even	without	going
so	far	as	to	build	a	clock	(he	did	design	one,	later	built	by	his	son),
Galileo	was	able	to	use	a	pendulum	as	an	accurate	timekeeper	when	he
later	carried	out	experiments	to	study	the	behaviour	of	balls	rolling
down	a	ramp.	These	experiments	provide	another	insight	into	both
Galileo’s	mind	and	the	scientific	method.	He	wanted	to	study	falling



objects,	to	investigate	the	effect	of	gravity	on	motion.	But	falling	balls
moved	too	fast	for	him	to	keep	track	of.	So	he	rolled	the	balls	down	an
inclined	ramp,	realizing	that	this	gave	him	a	stretched-out	and	slowed-
down	version	of	the	way	balls	fall	under	gravity.	Through	these
experiments,	Galileo	developed	the	idea	of	acceleration.	The	velocity	(or
speed)	of	an	object	tells	you	how	far	it	moves	in	a	certain	amount	of
time	–	say,	one	second.	A	constant	velocity	of	9.8	metres	per	second
means	that	in	every	second	the	moving	object	covers	a	distance	of	9.8
metres.	But	Galileo	found	that	falling	objects	(or	balls	rolling	down	a
ramp)	move	faster	and	faster,	with	the	speed	increasing	each	second.
Crucially,	his	experiments	showed	that	the	speed	increases	by	the	same
amount	every	second.	This	is	uniform	acceleration,	and	a	uniform
acceleration	of	9.8	metres	per	second	per	second	means	that,	starting
from	rest,	in	the	first	second	the	object	reaches	9.8	metres	per	second,	in
the	second	it	speeds	up	to	19.6	metres	per	second,	in	the	third	29.4
metres	per	second,	and	so	on.	I	have	chosen	this	particular	example
because	9.8	metres	per	second	per	second	is,	indeed,	the	acceleration
caused	by	gravity	for	a	falling	object	at	the	surface	of	the	Earth;	because
of	the	way	time	comes	into	the	calculation	twice,	this	is	called	a	second
order	effect,	with	velocity	a	first	order	effect.	And	this	acceleration	due
to	gravity	explains	why	pendulums	behave	as	they	do,	neatly	closing	the
loop.

Galileo	did	something	else	–	something	central	to	the	story	we	tell	in
this	book.	He	realized	that	the	balls	rolling	down	his	inclined	planes
were	being	slowed	down	a	little	by	friction.	In	fact,	what	he	measured
was	not	a	perfectly	uniform	acceleration.	But	he	took	the	dramatic	and
influential	leap,	astonishing	for	his	time,	of	extrapolating	from	his	actual



observations	to	work	out	how	his	balls	would	move	without	the	effect	of
friction,	on	some	idealized,	perfectly	slippery	slope.	This	kind	of
extrapolation	would	be	at	the	heart	of	the	scientific	investigation	of	the
world	for	the	next	four	centuries.	When	scientists	–	physicists	in
particular	–	tried	to	describe	the	world	in	terms	of	mathematical	laws,
they	formulated	those	laws	to	describe	the	behaviour	of	mythical	objects
such	as	perfectly	hard	spheres,	which	bounce	off	one	another	without
being	deformed	and	roll	along	surfaces	without	feeling	friction,	and	so
on.	But,	unlike	the	Ancient	Greek	philosophers,	they	knew	that	their
image	of	perfection	did	not	represent	the	real	world.	Armed	with	those
equations,	they	could	then	try	to	put	in	extra	terms,	correction	factors,
to	take	account	of	the	imperfections	of	the	real	world,	allowing,	say,	for
the	effect	of	air	resistance	on	a	falling	object.	Air	resistance	explains	why
on	Earth	a	hammer	and	a	feather	fall	at	different	rates,	while	on	the
airless	Moon,	as	the	Apollo	astronauts	demonstrated,	they	fall	at	the
same	rate.

All	of	this	helped	Galileo	to	cast	out	of	science	another	aspect	of	the
geometrical	perfection	which	his	predecessors	had	imagined	in	the	real
world.	Before	Galileo,	it	was	thought	that	when	a	cannon	fired	its	ball	at
some	angle	above	the	horizontal,	the	flight	of	the	ball	would	consist	of	a
straight	line	as	it	left	the	muzzle,	then	it	would	follow	the	arc	of	a
perfect	circle	for	a	time,	then	it	would	fall	vertically	to	the	ground.	Only
the	imagined	perfection	of	straight	lines	and	circles	was	involved	in	the
motion.	Applying	his	discovery	that	gravity	produces	a	constant
downward	acceleration	on	the	cannonball,	and	allowing	for	the	initial
velocity	of	the	ball	out	of	the	muzzle,	Galileo	showed	that	the	flight	of
the	ball	must	actually	be	a	single	smooth	curve,	part	of	a	parabola,	all
the	way	to	its	target.	The	same	calculations	showed	that	the	maximum



the	way	to	its	target.	The	same	calculations	showed	that	the	maximum
range	for	the	cannon	(assuming	the	same	charge	of	gunpowder	and
weight	of	shot)	would	always	be	achieved	when	it	was	fired	at	an	angle
of	45	degrees	upwards	from	the	horizontal.	These	were	practical	matters
of	great	importance	in	the	turbulent	times	Galileo	lived	in,	and	this	kind
of	military	work	helped	to	establish	his	early	reputation.	Whatever
philosophers	and	theologians	might	say	about	perfection,	armies	in	the
field	had	no	time	to	quibble	about	the	desirability	of	circular	motion;	all
they	wanted	to	know	was	which	way	to	point	their	guns	to	achieve
maximum	effect,	and	Galileo	told	them.

It	was	a	combination	of	Kepler’s	discovery	of	elliptical	orbits	and
Galileo’s	insights	both	into	acceleration	and	the	scientific	method	that
paved	the	way	for	the	greatest	scientific	discovery	of	the	seventeenth
century,	and	perhaps	of	all	time:	Isaac	Newton’s	universal	law	of
gravitation.	Newton	was	born	in	1642	and	died	in	1727.	His	great	work
Philosophiae	Naturalis	Principia	Mathematica,	or	just	the	Principia	for
short,	was	written	over	the	years	1684	to	1687,	and	published	in	1687,
but	was	based	on	ideas	that	he	had	developed	twenty	years	earlier,	when
he	was	a	young	Cambridge	graduate	about	to	become	a	Fellow	of	Trinity
College,	and	had	been	forced	to	spend	months	at	his	mother’s	home	in
Lincolnshire	when	the	University	was	closed	because	of	the	plague.	Like
Galileo,	Newton	stressed	the	importance	of	comparing	theories	and
models	with	experiments	and	observations	of	the	real	world,	and	always
carried	out	relevant	experiments	himself,	whenever	possible,	to	test	his
ideas.	This	is	so	deeply	ingrained	as	part	of	the	scientific	method	today
that	it	may	seem	obvious,	even	to	non-scientists,	and	it	is	hard	to
appreciate	the	extent	to	which,	even	into	the	seventeenth	century,	many



philosophers	would	speculate	about	the	nature	of	the	physical	world	in
an	abstract	way,	without	ever	getting	their	hands	dirty	in	experiments.
The	classic	example	is	the	argument	about	whether	two	different
weights	dropped	from	the	same	height	at	the	same	time	would	hit	the
ground	together	–	an	argument	that	rumbled	on	for	decades	among
those	abstract	thinkers	even	after	a	Flemish	engineer,	Simon	Stevin,
actually	did	such	experiments	with	lead	weights	dropped	from	a	height
of	about	10	metres,	found	that	they	fell	at	the	same	rate,	and	published

his	results	in	1586.1

Newton	also	took	on	board	and	refined	Galileo’s	insight	into	the
value	of	deliberately	simplified	models	(such	as	Galileo’s	frictionless
planes)	as	descriptions	of	particular	aspects	of	the	real	world.	It	is	a	key
feature	of	Newton’s	work	on	gravity	and	orbits,	for	example,	that	in	his
calculations	of	the	effects	of	gravity	he	treats	an	object	such	as	Mars,	or
the	Moon,	or	an	apple,	as	if	all	its	mass	were	concentrated	at	a	single
point,	and	that	provided	you	are	outside	the	object	of	interest,	its
gravitational	influence	is	measured	in	terms	of	your	distance	from	that
point,	the	centre	of	mass	of	the	object	(which	is	also	the	geometrical
centre	if	the	object	is	a	sphere).	In	the	Principia,	Newton	proved	that	this
is	the	case	for	spherical	objects.	He	knew	that	the	Earth	is	not	precisely
spherical	(indeed,	he	was	able	to	calculate	how	much	the	Earth	bulges	at
the	equator	because	of	its	rotation);	but	he	felt	it	was	reasonable	to
assume	a	spherical	Earth	(and	a	spherical	Sun,	a	spherical	Mars,	and	so
on)	as	a	first	approximation,	and	calculate	the	orbits	accordingly.	As	it
happens,	later	calculations	have	established	that,	provided	you	are	far
enough	away	from	them,	even	very	irregularly	shaped	objects	do	act,
gravitationally	speaking,	as	if	all	their	mass	were	concentrated	at	a



point,	but	this	doesn’t	diminish	the	importance	of	the	idea	of	using
idealized	approximations	to	reality	where	it	is	necessary,	or	helpful,	to
make	the	calculations	more	straightforward.

There	is,	though,	rather	more	to	this	particular	story	than	meets	the
eye.	In	the	Principia,	Newton	proved	the	validity	of	treating	the
gravitational	influence	of	a	spherical	object	as	if	all	its	masses	were
concentrated	at	its	centre,	using	geometrical	techniques	that	would	have
been	understood	by	the	Ancient	Greeks,	and	were	certainly	familiar	to
Newton’s	contemporaries.	This	is	very	difficult.	But	we	now	know	that
well	before	he	wrote	the	Principia	Newton	had	developed	(or	discovered)
the	mathematical	technique	now	called	calculus,	and	that	this	proof	is
very	easy	using	calculus.	Some	scholars	suspect	that	Newton	actually
solved	the	problem	using	calculus	first,	and	then	went	through	the
painstaking	process	of	translating	everything	into	classical	terminology,
to	make	sure	that	his	contemporaries	would	understand	it.	If	so,	he	may,
in	a	sense,	have	shot	himself	in	the	foot,	because	by	keeping	quiet	about
his	new	mathematical	technique	he	paved	the	way	for	a	bitter	wrangle
with	the	German	Wilhelm	Leibniz,	who	invented	the	technique
independently	(and	gave	it	the	name	by	which	it	is	still	known).	Leibniz
had	the	idea	a	little	later	than	Newton	did,	but	had	the	good	sense	to
publish	his	work,	which	is	partly	why	there	were	bitter	rows	about
priority	(the	bitter	rows	were	also	partly	because	both	protagonists	were
unwilling	to	make	concessions,	and	Newton	in	particular	was	a	rather
unpleasant	person,	who	had	an	arrogant	belief	in	his	own	abilities	and	a
spiteful	reaction	to	anyone	he	perceived	as	an	opponent).	But	the
arguments	over	priority	are	of	little	concern	here.	What	matters	is	that
calculus	is	a	technique	that	makes	it	possible	to	break	up	problems	into



tiny	components	that	can	be	manipulated	mathematically	and	the	results
added	up	to	give	a	solution	to	the	overall	problem.	In	the	case	of	the
gravitational	influence	of	a	spherical	object,	for	example,	the	sphere	can
be	treated	as	being	divided	up	(differentiated)	into	an	infinite	number	of
infinitesimally	small	pieces	of	matter,	and	an	equation	describing	the
gravitational	influence	of	a	typical	such	piece	of	matter	in	terms	of	its
position	in	the	sphere	written	down.	The	overall	effect	of	all	the	pieces
of	matter	working	together	can	then	be	added	up,	or	integrated,	from

this	equation.2

The	same	sort	of	process	can	be	applied	to	time.	The	flight	of	an
arrow,	for	example,	can	be	differentiated	into	a	description	of	how	the
arrow	is	moving	at	any	of	an	infinite	number	of	points	along	its	path,
and	the	same	thing	can	be	done	for	the	path	of	a	runner	trying	to	escape
the	arrow.	When	the	two	differential	equations	are	integrated,	they	will
tell	you	exactly	where	the	arrow	meets	the	runner,	with	no	paradox.
When	the	calculus	became	widely	understood,	it	seemed	that	Newton
and	Leibniz	had	tamed	time,	making	it	possible	to	describe	the
behaviour	of	moving	things	with	the	precision	that	the	Ancient	Greeks
had	been	able	to	apply	to	their	description	of	the	relationships	between
static	things.	At	least,	in	principle.	At	the	level	of	single	planets	orbiting
single	stars,	or	of	single	runners	trying	to	escape	from	single	arrows,
calculus	is	easy;	like	other	things,	it	gets	complicated	when	we	are
dealing	with	more	complicated	systems,	although	the	same	basic	rules
apply.	It	is	usually	straightforward	to	write	down	a	set	of	differential
equations	to	describe	such	a	system;	it	is	solving	(integrating)	the
equations	that	can	cause	problems.

Whatever	the	mathematical	techniques	he	used	in	private	in	the



1680s,	in	the	Principia	itself	Newton	proved,	using	techniques	familiar	to
his	contemporaries,	that	in	order	for	the	planets	to	follow	elliptical
orbits	around	the	Sun	(and	therefore	to	match	observation	with	theory),
gravity	must	follow	an	inverse	square	law.	Specifically,	the	force	of
attraction	between	any	two	masses	a	certain	distance	apart	(the	distance
being	measured	from	the	centre	of	mass	of	each	object)	is	proportional
to	the	two	masses	multiplied	together	and	divided	by	the	square	of	the
distance	between	them	(hence	‘inverse	square’	law).	The	constant	of
proportionality	that	comes	into	the	calculation	is	the	constant	of	gravity,
a	number	which	tells	us	how	strong	gravity	is,	and	is	denoted	by	G.
Using	obvious	symbols,	 .

This	was	not	a	complete	surprise	to	Newton’s	contemporaries.	People
such	as	Robert	Hooke,	Edmond	Halley	and	Christopher	Wren,	all	Fellows
of	the	Royal	Society,	already	knew	that	an	inverse	square	law	would
produce	elliptical	orbits.	Newton’s	triumph	was	to	prove	that	only	an
inverse	square	law	would	do	this,	and	that	therefore	gravity	must	obey
an	inverse	square	law.	But	he	went	further.	His	work	implied	that	this
was	a	universal	law.	It	wasn’t	something	that	applied	only	to	apples
falling	from	trees,	or	to	the	Moon	in	orbit	around	the	Earth,	or	the
planets	in	orbit	around	the	Sun.	And	it	was	the	same	all	the	time	–	it
didn’t	only	apply	in	summer,	or	when	there	was	an	‘r’	in	the	month.	It
applied	to	the	force	of	attraction	exerted	by	any	piece	of	matter,
anywhere	in	the	Universe,	on	any	other	piece	of	matter,	anywhere	else
in	the	Universe.	Newton	made	the	Universe	seem	an	orderly	place,	with

no	room	for	interference	from	capricious	gods.3	And	he	provided	three
other	laws,	the	laws	of	motion	which	describe	the	behaviour	of	moving
objects	in	the	laboratory,	or	in	the	world	at	large,	or	in	the	Solar	System



and	beyond,	which,	by	extension,	must	also	be	thought	of	as	universal
laws,	applying	everywhere	and	at	all	times.

These	are	Newton’s	laws	of	motion,	which	underpin	three	hundred
years	of	science,	but	which	can	be	summarized	very	simply,	and	which
again	highlight	the	development	of	the	scientific	way	of	looking	at	the
world.	Newton’s	first	law	says	that	every	object	stays	still	or	keeps
moving	in	a	straight	line	unless	it	experiences	–	or	feels	–	a	force.	The
‘staying	still’	part	matches	common	sense	(by	which	we	mean	things	that
we	experience	every	day	here	on	Earth).	Things	don’t	move	unless
something	makes	them	move.	But	the	constant	motion	in	a	straight	line
business	flies	in	the	face	of	common	sense.	When	we	set	things	moving
here	on	Earth,	left	to	their	own	devices	they	fall	to	the	ground	and	stop.
Newton’s	insight,	extending	the	ideas	of	Galileo,	was	that	they	only	fall
down	because	of	an	external	force	(gravity),	and	they	only	stop	moving
because	of	other	forces	(friction).	Without	ever	having	seen	the	images
familiar	to	us	today	of	objects	obeying	Newton’s	laws	inside	the	zero-
gravity	and	almost	frictionless	environment	of	the	interior	of	a
spacecraft,	Newton	appreciated	what	the	world	would	be	like	if	friction
and	other	outside	forces	could	be	ignored.

The	second	law	tells	us	how	much	the	motion	of	an	object	is	affected
by	a	force	applied	to	it.	It	says	that	a	force	applied	to	a	mass	causes	an
acceleration	given	by	the	simple	equation	 ,	or	 	It	is	this	law,
plus	the	law	of	gravity,	which	explains,	or	describes,	the	orbit	of	a	planet
around	the	Sun.	Together,	the	second	law	and	the	law	of	gravity	also
explain	the	behaviour	of	falling	objects	observed	and	described	by
Galileo.	If	the	Earth	is	the	mass	M,	then	the	gravitational	force	acting	on
any	mass	at	the	surface	of	the	Earth	is	proportional	to	its	own	mass,	m



(since	 ).	But	the	acceleration	that	is	caused	by	this	force	is
determined	by	dividing.	So	the	mass	m	cancels	out	of	the	equation,	and
all	objects	falling	under	the	influence	of	gravity	accelerate	at	the	same
rate	near	the	surface	of	the	Earth.	They	all	accelerate	at	a	different	rate
(but	still	the	same	as	each	other)	at	the	surface	of	the	Moon,	and	so	on.

The	third	law	says	that	every	force	acting	on	an	object	produces	an
equal	and	opposite	force	–	or	in	Newton’s	language,	for	every	action
there	is	an	equal	and	opposite	reaction.	A	simple	example	of	this	is	when
the	force	used	in	a	rifle	to	send	a	bullet	speeding	on	its	way	produces	a
reaction	which	is	felt	as	the	kick	of	the	rifle	against	the	sharp-shooter’s
shoulder.	If	you	thump	a	desk	with	your	fist,	you	can	feel	the	reaction
equally	obviously.	Slightly	less	obviously,	when	the	Sun	tugs	on	a	planet
through	gravity,	the	planet	tugs	on	the	Sun	with	an	equal	and	opposite
force,	as	if	the	two	were	joined	by	a	piece	of	stretched	elastic.	Even	an
apple	falling	from	a	tree	is	pulling	the	Earth	up	to	meet	it,	by	a	tiny
amount	(only	a	tiny	amount,	because	although	the	same	force	applies	to
both	the	apple	and	the	Earth,	acceleration	is	proportional	to	the	force
but	inversely	proportional	to	mass,	and	the	Earth	is	a	whole	lot	more
massive	than	an	apple).	As	far	as	orbits	are	concerned,	this	means	that
instead	of	the	Moon,	say,	being	in	orbit	around	the	Earth,	actually	both
the	Moon	and	the	Earth	are	in	orbit	around	their	mutual	centre	of	mass
(which,	because	the	Earth	is	much	more	massive	than	the	Moon,
happens	to	lie	below	the	surface	of	the	Earth).

The	laws	apply	equally	well	to	planets	and	moons	moving	through
space,	and	(making	due	allowance	for	friction)	to	events	on	Earth,	where
a	good	approximation	to	Newton’s	laws	in	action	can	be	seen	on	a	pool
table.	But	for	now	we’ll	concentrate	on	the	behaviour	of	the	planets,
because	it	was	here	that	problems	with	Newton’s	description	of	the



because	it	was	here	that	problems	with	Newton’s	description	of	the
world	began	to	show	up	as	soon	as	he	developed	these	ideas.	The
problems	were	largely	swept	under	the	carpet	for	centuries,	but	it	was	in
the	realm	of	orbital	mechanics,	as	it	is	known,	that	the	first	hints	of
chaos	in	the	modern	scientific	sense	eventually	emerged.

Part	of	the	problem	is	that	although	Newton’s	laws	(including	the	law
of	gravity)	can	be	used	perfectly	to	calculate	the	orbits	of	two	objects
around	each	other	in	an	otherwise	empty	Universe	(the	Moon	around	the
Earth,	or	the	Earth	around	the	Sun,	and	so	on),	they	cannot	give	exact
answers	for	calculations	involving	three	or	more	objects	moving	under
their	mutual	gravitational	attraction	(such	as	the	Earth,	Moon	and	Sun
moving	together	through	space).	This	is	called	the	‘three-body	problem’,
although	it	applies	to	any	number	of	‘bodies’	bigger	than	two;	more
generally,	physicists	sometimes	refer	to	the	‘N-body	problem’,	where	N
can	be	any	number	bigger	than	two.	The	equations	describing	such
systems	can	be	written	down,	but	they	cannot	be	solved	–	they	are	not
integrable	and	are	said	to	have	no	analytical	solutions	(meaning	that	the
techniques	of	mathematical	analysis	do	not	work	with	them).	Equations
that	can	be	solved	analytically	are	sometimes	said	to	be	deterministic;
the	equation	describing	the	orbit	of	a	single	planet	around	the	Sun	is
deterministic,	and	has	analytical	solutions	in	the	form	of	ellipses.	It’s
important	to	appreciate,	though,	that	the	lack	of	solutions	to	the	three-
body	problem	is	not	caused	by	our	human	deficiencies	as
mathematicians;	it	is	built	into	the	laws	of	mathematics.

There	are,	however,	often	ways	around	the	problem.	These	involve
approximations.	For	literally	three	bodies	in	orbit	around	one	another,	it
is	possible	to	carry	out	the	calculation	in	repeated	steps,	first	pretending



one	of	the	bodies	is	still	while	you	carry	out	the	calculations	to	work	out
how	the	other	two	bodies	will	move	a	little	way	in	their	orbits.	Then,
starting	from	these	new	positions,	another	of	the	three	bodies	is	held
still,	and	the	calculation	carried	out	for	the	other	two,	and	so	on.	The
answers	you	get	are	never	perfect,	because	in	reality	all	three	objects	are
moving	at	once.	But	if	you	make	the	time	step	involved	in	this	repeated
process	(such	a	repeated	mathematical	manipulation	is	sometimes	called
iteration)	small	enough,	in	many	cases	the	orbits	you	calculate	will	be
very	close	to	the	real	orbits.	In	the	Solar	System,	the	Sun	is	so	much
bigger	than	any	of	the	planets	(or,	indeed,	than	all	the	planets	put
together)	that	its	gravitational	influence	dominates,	and	to	a	first
approximation	the	influences	of	the	other	planets	can	be	ignored.	So	the
orbit	of	Mars,	for	example,	is	calculated	by	pretending	that	the	other
planets	do	not	exist,	giving	a	perfect	ellipse.	The	real	orbit	of	Mars
differs	slightly	from	this	analytical	solution	to	the	equations	of	motion,
but	the	differences	can	be	explained	by	allowing	for	the	perturbing
effects	of	other	planets,	notably	the	giants	Jupiter	and	Saturn.	Similarly,
the	orbit	of	the	Moon	around	the	Earth	can	be	calculated,	to	a	first
approximation,	by	ignoring	the	effects	of	the	Sun,	which	is	a	long	way
away,	and	then	adding	these	in	afterwards	as	a	correction	to	the
calculation.	If	you	are	prepared	to	carry	out	a	laborious	series	of
calculations	for	each	successive	correction	involving	all	the	planets	and
their	influences	on	each	other	(relatively	easy	today	using	high-speed
computers),	you	can	get	an	approximation	which	is	very	good	indeed	as
a	prediction	of	the	actual	observed	orbit	of	the	planet	or	moon	you	are
interested	in.	But	you	can	never	get	a	precisely	accurate	analytical
mathematical	solution	which	would	enable	you	to	predict	how	that



planet	or	moon	will	move	in	its	orbit	for	ever.	There	is	always	some
margin	of	error.	And	the	three-body	problem	is	completely	intractable	if
the	three	objects	are	about	the	same	size	(that	is,	mass)	as	each	other
and	are	at	roughly	equal	distances	from	each	other.	The	absence	of
analytical	solutions	means	that	nature	itself	does	not	‘know’	exactly	how
the	orbits	will	change	(evolve)	as	time	passes.	Even	for	the	planets	of	the
Solar	System,	there	is	always	the	possibility	that	the	orbits	may	not	stay
the	same	for	ever	as	they	are	today,	but	may	change	in	literally
unpredictable	ways.

Newton	was	aware	of	this,	but	was	a	deeply	religious	man	(although
his	religious	beliefs	did	not	entirely	match	those	of	orthodox	Church
teaching	at	the	time),	and	solved	the	problem,	in	his	own	mind	at	least,
by	suggesting	that	if	the	planets	began	to	wander	from	their	familiar
orbits	(perhaps	spiralling	in	towards	the	Sun	or	out	into	the	depths	of
space)	God	could	always	intervene	to	put	them	back	on	course.	This
drew	a	cutting	riposte	from	Leibniz,	who	picked	up	on	the	analogy
between	Newton’s	orderly,	deterministic	Universe	and	a	clock	to	sneer
that	Newton’s	God	must	be	a	pretty	poor	watchmaker	if	he	was
incapable	of	making	a	clock	that	would	not	keep	steady	time	unless	He
intervened	whenever	it	broke	down.

The	puzzle	persisted	until	the	end	of	the	eighteenth	century,	when
the	French	mathematician	Pierre	Laplace	(1749-1827)	seemed	to	restore
order	to	the	Solar	System.	He	concentrated	first	on	calculating	(using	the
laborious	step-by-step	process	outlined	earlier)	the	orbits	of	Jupiter	and
Saturn,	which	are	the	two	largest	planets	in	the	Solar	System,	and	exert
the	largest	gravitational	influence,	both	on	each	other	and	on	the	smaller
planets,	after	the	Sun	itself.	Laplace	found	that	at	present	the	orbit	of



Jupiter	is	expanding	slightly,	while	the	orbit	of	Saturn	is	shrinking	–	just
the	sort	of	effect	that	Newton	was	worried	about.	But	Laplace	discovered
that	these	changes	are	linked	to	a	rhythmic	change	in	the	gravitational
influence	of	the	two	planets	on	each	other,	which	operates	because
Saturn	makes	two	orbits	of	the	Sun	while	Jupiter	travels	around	its	own
orbit	five	times.	This	means	that	the	two	giant	planets	are	at	their	closest
to	each	other	every	fifty-nine	years.	Using	Newton’s	laws	and	the	step-
by-step	iterative	technique,	Laplace	calculated	that	the	effect	of	all	this
was	to	reverse	the	overall	changes	seen	in	the	orbits	of	the	two	planets
every	929	years	–	after	929	years	with	the	orbit	of	Jupiter	expanding
and	the	orbit	of	Saturn	shrinking,	there	is	an	interval	of	929	years	with
the	orbit	of	Jupiter	shrinking	while	the	orbit	of	Saturn	expands,	and	so
on.	Laplace	thought	that	he	had	restored	order	to	the	Solar	System,	and
famously	remarked	to	Napoleon	that	he	‘had	no	need’	of	the	God
‘hypothesis’,	writing:
The	irregularities	of	these	two	planets	appeared	formerly	to	be	inexplicable	by	the	law	of	universal	gravitation	–	they

now	form	one	of	its	most	striking	proofs.

As	we	shall	see,	he	was	only	right	up	to	a	point.	But	he	showed	that	the
same	kind	of	stability	applied	to	other	planets,	and	by	implication	to	the
Solar	System	as	a	whole,	so	that	from	the	early	nineteenth	century
onwards	Newton’s	laws	really	did	seem	to	imply	that	the	Solar	System
itself	and	the	Universe	at	large	operated	with	the	stability	and	reliability
of	a	perfect	clock,	requiring	no	outside	intervention	to	maintain	perfect
time.	The	success	of	Newton’s	laws	enabled	physicists	to	solve	many
problems,	and	is	the	rock	upon	which	the	whole	of	modern	science	is
founded.	Although	physicists	were	aware,	in	the	nineteenth	and
twentieth	centuries,	that	there	are	many	situations	in	which	there	are	no
analytical	solutions	to	the	relevant	equations,	they	could	make	such



analytical	solutions	to	the	relevant	equations,	they	could	make	such
huge	progress	by	solving	the	equations	where	they	were	deterministic,
and	by	applying	approximation	techniques	in	other	cases,	that	the	more
intractable	puzzles	were	largely	ignored.	It	is	only	natural,	after	all,	to
solve	all	the	easy	puzzles	first,	before	worrying	about	the	difficult	ones.
But	just	a	few	people	did	worry	about	problems	that	lay	beyond	the
scope	of	Newton’s	equations	(at	least	to	the	extent	of	pointing	out	that
such	problems	existed),	and	another	kind	of	three-body	problem
highlights	just	how	limited	Newton’s	laws	really	are.

This	is	a	situation	which	can	be	visualized	in	terms	of	collisions
between	three	balls	on	a	pool	table.	If	one	moving	ball	strikes	another
stationary	ball	(or	even	if	both	balls	are	moving),	then	Newton’s	laws
can	be	used	to	work	out	exactly	how	the	two	balls	move	after	the
collision,	provided	we	know	the	masses	of	the	balls,	the	speed	the
moving	ball	is	travelling	at,	and	make	the	usual	allowances	for	friction
(or	ignore	it).	But	if	two	stationary	balls	are	arranged	so	they	are
touching	each	other,	and	the	moving	ball	hits	them	sideways	on,	striking
both	the	stationary	balls	simultaneously,	in	general	Newton’s	laws

cannot	tell	you	how	the	balls	will	move	apart	after	the	collision.	4

Provided	one	or	the	other	of	the	two	touching	balls	is	hit	first,	even	if
only	by	a	tiny	fraction	of	a	second,	the	laws	tell	you	where	the	three
balls	will	go.	But	for	a	genuinely	simultaneous	collision,	they	do	not.
You	might	try	to	weasel	your	way	out	of	this	difficulty	by	arguing	that	in
practice	it	is	highly	unlikely	that	the	collision	will	be	literally
simultaneous,	but	it	is	still	a	worrying	feature	of	the	world	that	there	are
simple	situations	which,	according	to	the	laws	that	proved	so	successful
when	applied	to	everything	from	explaining	the	swing	of	a	simple



pendulum	to	the	flight	of	a	spacecraft	to	the	Moon,	have	unpredictable
outcomes.

Figure	1.1	According	to	Newton’s	laws,	if	one	perfectly	elastic	sphere	strikes	two	touching	perfectly
elastic	spheres	simultaneously,	it	is	impossible	to	predict	where	the	three	spheres	will	go.

Nobody	really	worried	about	this	in	the	nineteenth	century.	They
were	too	busy	applying	both	Newton’s	laws	and	the	scientific	method
developed	by	Galileo	and	Newton	to	produce	an	overall	picture	of	an
orderly,	deterministic	Universe.	The	prevailing	image	was	the	one
encapsulated	by	Laplace	in	1814	in	his	Essai	phibsophique	sur	les
probabilites:
Consider	an	intelligence	which,	at	any	instant,	could	have	a	knowledge	of	all	forces	controlling	nature	together	with	the

momentary	conditions	of	all	the	entities	of	which	nature	consists.	If	this	intelligence	were	powerful	enough	to	submit	all

this	data	to	analysis	it	would	be	able	to	embrace	in	a	single	formula	the	movements	of	the	largest	bodies	in	the	universe

and	those	of	the	lighter	atoms;	for	it	nothing	would	be	uncertain;	the	future	and	the	past	would	be	equally	present	to	its

eyes.

The	modern	equivalent	would	be	a	supercomputer	which	knew	the
positions	and	velocities	of	every	particle	in	the	Universe,	and	could	use
Newton’s	laws	and	the	laws	which	describe	the	forces	of	nature	(such	as
gravity	and	electromagnetism)	not	only	to	predict	the	future	course	of
every	particle,	but	to	work	out	the	entire	history	of	where	they	had
come	from	–	for	there	is	nothing	in	Newton’s	laws	to	reveal	the	direction
of	time,	and	the	laws	work	just	as	well	if	time	is	running	the	other	way,
as	you	can	easily	see	by	imagining	the	reverse	of	a	collision	between	two



as	you	can	easily	see	by	imagining	the	reverse	of	a	collision	between	two
pool	balls,	or	reversing	the	motion	of	every	planet	in	the	Solar	System	in
its	orbit.	There	is	no	arrow	of	time	in	Newton’s	laws,	and	they	seemed,
to	Laplace	and	many	others,	to	describe	a	completely	deterministic
world	in	which	both	past	and	future	are	rigidly	fixed	and	there	is	no
scope	for	free	will.	What	none	of	these	people	seems	to	have	noticed	is
that	the	basic	argument	breaks	down	if,	at	any	time	and	any	place	in	the
Universe,	there	is	a	simultaneous	collision	between	three	particles	–
although	whether	that	would	be	enough	to	restore	free	will	is	something
I	shall	leave	for	the	philosophers	to	argue	about.

The	same	puzzle	about	time	emerged	from	one	of	the	greatest
triumphs	of	nineteenth-century	physics:	the	understanding	of	light	and
other	forms	of	electromagnetic	radiation,	which	culminated	in	the	work
of	the	Scot	James	Clerk	Maxwell	(1831–79).	Maxwell’s	description	of
electromagnetic	radiation	built	on	the	work	of	Michael	Faraday,	who
lived	from	1791	to	1867,	and	came	up	with	the	idea	of	electric	and
magnetic	‘fields’	which	surround	magnets	or	electrically	charged	objects.
Such	a	field	can	be	made	visible	in	the	classic	schoolroom	experiment
where	iron	filings	are	sprinkled	on	a	sheet	of	paper	held	flat	on	top	of	a
magnet;	when	the	paper	is	gently	tapped,	the	iron	filings	arrange
themselves	in	lines	linking	the	two	magnetic	poles	of	the	magnet,
marking	out	so-called	lines	of	force,	associated	with	the	magnetic	field.
It	was	Faraday	who	first	suggested	that	light	might	be	produced	by	some
sort	of	vibration	in	the	lines	of	force	associated	with	magnets	and
charged	particles,	twanging	like	plucked	violin	strings.	But	Faraday
lacked	the	mathematical	expertise	to	develop	this	idea	into	a	fully
worked-out	model,	and	it	was	Maxwell	who	finished	the	job	in	the



1860s.	He	showed	that	all	electric	and	magnetic	phenomena	known	at
the	time,	including	the	behaviour	of	light,	could	be	described	by	a	set	of
just	four	equations,	now	known	as	Maxwell’s	equations.	These	equations
did	for	electromagnetic	fields	and	radiation	what	Newton’s	laws	did	for
solid	matter	–	in	principle,	they	described	everything	and	made	it
possible	to	calculate	the	consequences	of	any	electromagnetic
interaction,	although	this	might	require	a	great	deal	of	patience	in
complicated	situations.	Maxwell’s	equations	describe	how	dynamos	and
electric	motors	work,	why	a	compass	needle	points	north,	how	big	the
force	is	between	two	electric	charges	a	certain	distance	apart	(it	was
already	known	that	both	electricity	and	magnetism,	like	gravity,	obey
inverse	square	laws),	and	much	more.	Together,	Newton	and	Maxwell
provided	the	mathematical	tool	kit	needed	to	deal	with	everything
known	to	physical	science	in	the	middle	of	the	nineteenth	century.	And
the	most	wonderful	thing	about	Maxwell’s	equations	was	that	they
produced	a	description	of	light	without	being	asked	-the	equations	were
set	up	to	describe	other	electromagnetic	phenomena,	but	they	included
within	themselves	a	solution	which	described	an	electromagnetic	wave
travelling	through	space	at	a	certain	speed.	That	speed	is	exactly	the
measured	speed	of	light	(already	well	determined	by	the	1860s,	and
soon	to	be	measured	even	more	accurately),	leaving	no	doubt	that	light
travels	in	the	form	of	an	electromagnetic	wave.

Figure	1.2	According	to	Newton’s	laws,	collisions	between	pairs	of	objects	are	perfectly	reversible.	The



picture	looks	equally	plausible	whichever	way	we	draw	the	‘arrow	of	time’.

But	there	are	two	curious	features	of	Maxwell’s	equations,	one	of
which	was	soon	to	have	a	profound	impact	on	physics,	and	the	other
which	was	treated	only	as	a	minor	oddity	until	quite	recently.	The	first
strange	feature	of	the	equations	is	that	they	give	the	speed	of	light	as	a
constant,	independent	of	how	the	source	of	the	light	is	moving	relative
to	the	person	(or	machine)	that	measures	its	speed.	According	to	the
equations,	if	you	shine	a	torch	at	me	we	both	measure	the	speed	of	the
light	from	it	as	this	constant,	c.	That’s	fine	if	we	are	both	standing	still.
But	if	I	am	moving	past	you,	or	you	are	moving	past	me,	even	at	a	very
high	speed,	both	you	and	I	still	measure	the	speed	of	light	from	the	torch
as	c.This	is	true	when	I	am	approaching	you	(you	might	think,	from
common	sense,	that	I	ought	to	measure	a	speed	equal	to	cplus	my	own
speed	relative	to	you)	and	when	I	am	moving	away	from	you	(when
common	sense	says	that	I	should	measure	a	speed	of	c	minus	my	own
speed	relative	to	you).	It	is	this	requirement	from	Maxwell’s	equations
that	the	speed	of	light	is	a	constant	for	all	observers,	no	matter	how	they
are	moving,	that	led	Albert	Einstein	to	develop	the	special	theory	of
relativity,	published	in	1905,	and	move	on	to	the	general	theory	of
relativity,	published	a	decade	later.	Relativity	theory,	however,	has	no
place	in	this	book,	except	to	acknowledge	that	it	does	exist	and	provides
a	more	complete	description	of	the	behaviour	of	moving	objects	and
gravity	than	Newtonian	theory	does.	It	does	not	overturn,	or	supplant,
Newtonian	physics,	but	includes	Newton’s	ideas	within	itself	and	extends
the	description	of	the	physical	world	to	conditions	where	Newtonian
theory	is	inadequate	–	particularly	for	objects	moving	at	very	high



speeds	and	objects	in	strong	gravitational	fields.	But	as	a	description	of

the	motion	of	the	Earth	around	the	Sun,	for	example,	Newtonian	physics
is	accurate	to	within	one	part	in	a	hundred	million,	and	it	is	even	more
accurate	as	a	description	of	events	on	the	human	scale.

Maxwell’s	equations	also	have	their	limits,	particularly	in	the
description	of	events	on	very	small	scales,	such	as	the	behaviour	of
atoms	and	the	particles	that	make	up	atoms.	There,	both	the	classical
(Maxwell)	description	of	electromagnetic	interactions	and	the	classical
(Newton)	description	of	particle	interactions	have	to	be	modified,	and
the	rules	of	quantum	physics	apply.	Quantum	effects	–	or	at	least,	one
particular	quantum	effect	–	will	come	into	our	story	later,	although	only
in	a	relatively	minor	role.	Almost	everything	we	deal	with	here	can	be
described	(and	perhaps	understood)	in	terms	of	Newtonian	mechanics.
Even	Maxwell’s	equations	are	only	really	worth	mentioning	because	of
their	other	odd	feature.

The	other	strange	feature	of	Maxwell’s	equations	is	that,	like
Newton’s	equations,	they	have	no	inbuilt	arrow	of	time.	This	is	not	too
worrying	when	we	think	about	things	like	electrically	charged	particles
moving	in	magnetic	fields,	and	imagine	reversing	the	direction	of	time.
Everything	would	still	obey	the	laws	of	physics	described	by	Maxwell’s
equations	and	Newton’s	laws.	But	according	to	the	equations,	there	is	no
difference	between	a	light	wave	spreading	out	from	a	lamp	and	its	time-
reversed	counterpart,	a	light	wave	converging	on	a	lamp.	That	would	be
as	strange,	to	us,	as	to	see	the	scattered	balls	on	a	pool	table	assemble
themselves	into	a	neat	triangle,	using	energy	gained	from	friction,	and
shoot	the	white	ball	neatly	on	to	the	end	of	the	player’s	cue,	giving	it	a
kick.	Yet	both	possibilities	are	allowed	by	the	combined	laws	of



Newton’s	and	Maxwell’s	equations.	Clearly,	there	is	something	odd	about
the	arrow	of	time.

What	was	for	a	long	time	the	standard	explanation	of	why	we	see	a
preferred	direction	of	time	stems	from	another	great	triumph	of
nineteenth-century	physics,	the	description	of	the	relationship	between
heat	and	motion	(thermodynamics).	This	was	of	fundamental	practical
importance	in	the	industrial	world	when	that	industry	was	being
powered	by	steam	engines.	From	our	point	of	view,	the	importance	of
the	science	of	thermodynamics	is	that	it	provided	physicists	with	a	way
to	describe	the	behaviour	of	very	large	numbers	of	objects	–	in
particular,	particles	of	gas	–	in	some	sense	working	together	in	a
complex	system.	This	involves	averaging	and	statistics,	but	it	is	largely
based	on	the	idea	that	a	gas	is	made	up	of	a	myriad	tiny	particles	(atoms
and	molecules)	bouncing	around	and	colliding	with	one	another	and	the
walls	of	their	container	in	accordance	with	Newton’s	laws	of	motion.
This	kinetic	theory	of	gases	was	a	significant	example	of	how	the
universal	laws	of	physics	brought	order	out	of	chaos.	The	very	name
‘gas’	was	coined	by	the	Flemish	physician	Joannes	(originally	Jan)	van
Helmont,	from	the	Greek	word	for	chaos;	the	term	first	appeared	in	print
in	van	Helmont’s	book	Ortus	Medicinae,	published	in	1648,	four	years
after	the	death	of	Joannes,	by	his	son	Franciscus.	The	idea	of	gas	as
chaos	remained	appropriate	for	three	hundred	years,	until	Maxwell,
working	in	Britain,	and	his	contemporary	Ludwig	Boltzmann,	working	in
Vienna,	put	the	kinetic	theory	(previously	a	speculative	idea)	on	a	secure
scientific	footing	based	on	Newton’s	laws.	The	pressure	a	gas	applies	to
the	walls	of	its	container,	for	example,	is	explained	in	terms	of	action
and	reaction	(Newton’s	third	law)	as	the	particles	of	the	gas	collide	with



the	wall	and	bounce	off,	back	into	the	volume	of	the	gas.	This	produces
what	feels	like	a	steady	pressure	simply	because	there	are	so	many
particles	involved,	producing	an	enormous	number	of	collisions	every
second.	In	round	figures,	the	number	of	molecules	in	a	box	of	gas	the
size	of	a	matchbox	is	roughly	one	million	billion	billion	(a	10	followed
by	23	zeros),	a	number	so	big	that	it	doesn’t	really	make	much
difference	if	we	think	about	a	box	ten	times	bigger	or	ten	times	smaller.
A	typical	molecule	of	air	in	the	atmosphere	at	sea	level	and	at	a
temperature	of	o	°C	experiences	nearly	four	million	collisions	every

second.	5	All	this	is	what	gives	the	illusion	that	air	is	a	continuous
medium;	and	it	also	means	that,	whatever	Laplace	might	have	imagined,
it	would	be	completely	futile	to	try	to	work	out	the	behaviour	of	a	gas
by	calculating	the	trajectories	of	every	single	molecule	in	accordance
with	Newton’s	laws	–	an	N-body	problem	where	N	is	equal	to	a	million
billion	billion.	This	is	where	the	statistics	come	into	the	story.

The	discipline	of	applying	the	laws	of	mechanics	in	a	statistical	way
to	describe	the	behaviour	of	large	numbers	of	atoms	and	molecules	in	a
gas	(or	some	other	system)	became	known	as	statistical	mechanics.	The
driving	force	behind	the	development	of	statistical	mechanics	was	the
need,	in	the	nineteenth	century,	to	find	a	scientific	description	of	the
features	of	thermodynamics	that	were	observed	not	only	in	experiments,
but	in	everyday	life	–	for	example,	the	observed	fact	that	without	some
kind	of	outside	intervention,	heat	always	flows	from	a	hotter	object	to	a
cooler	one.	In	everyday	language,	hot	things	cool	down.	In	the	real
world,	if	you	place	an	ice	cube	on	a	hot	surface,	the	ice	melts	as	it
warms	up;	we	never	see	liquid	water	spontaneously	forming	itself	into
ice	cubes	and	giving	out	heat	as	it	does	so,	although,	like	the	example	of
the	pool	balls	arranging	themselves	into	a	triangle,	as	far	as	the	motion



the	pool	balls	arranging	themselves	into	a	triangle,	as	far	as	the	motion
of	individual	atoms	and	molecules	is	concerned	this	would	seem	to	be
allowed	by	Newton’s	laws.	There	is	an	arrow	of	time	built	into	the
everyday	world,	and	it	seems	to	be	closely	tied	in	with	the	laws	of
thermodynamics	and	statistical	mechanics.

Those	laws	were	developed	from	observations	of	the	way	things
behave	in	the	real	world.	They	are	equivalent	to	starting	out	from	an
observation	that	apples	always	fall	downwards	from	trees,	never
upwards,	and	calling	this	a	law	of	nature,	then	going	on	to	measure	how
fast	they	fall,	how	they	accelerate,	extending	these	observations	to	other
objects	(such	as	the	Moon	and	Mars),	and	eventually	to	finding
mathematical	equations	that	describe	this	behaviour	–	in	this	case,	the
law	of	gravity.	For	thermodynamics,	the	starting	point	was	an
investigation	of	the	way	heat	flows	through	solid	objects,	carried	out	by
Joseph	Fourier	in	France	in	the	years	leading	up	to	1811,	when	he	won	a
prize	from	the	French	Academy	of	Sciences	for	this	work.	Fourier	found
a	simple	mathematical	law	to	describe	this	transfer	of	heat	–	the	flow	of
heat	is	proportional	to	the	temperature	difference,	with	(of	course)	heat
always	flowing	from	the	hotter	end	of	the	object	to	the	cooler	end.	This
simple	law	holds	an	equivalent	place	in	the	development	of
thermodynamics	as	Galileo’s	discovery	of	the	law	of	acceleration	for
falling	objects	holds	in	the	development	of	gravitational	theory.	And,
like	the	law	of	gravity,	Fourier’s	law	is	universal	–	it	applies,	in	fact,	not
just	to	solids	but	to	liquids	and	gases	as	well,	and	it	is	true	whatever	the
objects	are	made	of,	although	(unlike	the	acceleration	due	to	gravity)
the	constant	of	proportionality	in	the	relationship	is	different	for
different	chemical	substances.	As	most	people	have	learned	from	painful



first-hand	experience,	heat	flows	much	more	quickly	through	metal	than
through,	say,	wood.

Apart	from	its	direct	significance	to	the	study	of	heat	flow,	Fourier’s
discovery	of	this	simple	law	provided	a	profound	insight	into	the	nature
of	the	physical	world.	At	the	level	of	atoms	and	molecules,	it	would	be	a
hopeless	task	to	try	to	predict	the	overall	properties	of	an	object	big
enough	to	be	manipulated	on	a	human	scale	(so-called	macroscopic
objects);	the	interactions	between	all	the	particles	are	so	complicated
that	they	defy	direct	analysis,	and	represent	(as	van	Helmont
appreciated)	something	close	to	the	everyday	meaning	of	chaos.	But
with	billions	and	billions	of	molecules	interacting	with	one	another,
somehow	the	chaos	gets	lost,	or	smoothed	out,	and	order	associated	with
simple	law	appears	(or	reappears).	Nobody	knew	how	this	could	happen.
They	knew	that	a	few	particles	obeying	Newton’s	laws	could	be
described	in	a	simple	way	(even	if	actually	solving	the	equations
involved	tedious	approximation	techniques),	and	they	knew	that	huge
numbers	of	particles	working	together	could	be	described	in	a	simple
way.	But	they	did	not	know	how	you	got	from	one	level	to	the	other,
and	it	didn’t	matter,	as	long	as	thermodynamics	could	be	developed	in
its	own	right	as	a	practical	science	in	the	steam	age.

That	development	took	many	decades	–	most	of	the	rest	of	the
nineteenth	century	–	but	it	produced	a	description	of	the	way	things
behave	in	terms	of	their	macroscopic	properties,	such	as	temperature,
pressure,	density,	and	even	their	chemical	behaviour,	and	how	these
properties	respond	to	changes	imposed	on	the	system	from	outside,	such
as	an	increase	in	pressure,	or	a	decrease	in	temperature.	It	did	not	try	to
predict	such	changes	in	terms	of	the	behaviour	of	individual	molecules



and	atoms,	although	the	interpretation	of	what	was	going	on	did
acknowledge	the	existence	of	these	particles	and	made	use	of	their
average	properties	in	a	statistical	way.

An	important	precursor	to	Fourier’s	work	had	been	carried	out	by
Count	Rumford	in	Bavaria	in	the	1790s.	Rumford,	who	was	born	in	the
then	British	colony	of	Massachusetts	in	1753	and	lived	until	1814,	was
originally	Benjamin	Thompson,	but	was	made	a	Count	by	George	III	of
Bavaria,	whom	he	served	as	an	adviser	during	a	colourful	career	as	a
soldier,	statesman,	spy	and	public	benefactor.	It	was	through	his	work	in
Bavaria,	overseeing	the	production	of	new	cannon	for	the	army,	that
Rumford	came	up	with	the	insight	that	heat	is	a	form	of	work.	The
cannon	were	bored	out	with	a	tool	driven	by	horse-power,	and	as	the
horses	worked	harder	the	boring	tool	and	the	cannon	blank	it	was
cutting	into	got	hotter.	A	steam	engine	converts	heat	into	work;	the
cannon-boring	process	turned	work	into	heat,	as	a	by-product	of	making
the	cannon.

It	took	a	long	time	for	all	these	ideas	to	gestate.	A	key	step	was	taken
by	James	Joule	in	Britain	in	the	1840s.	He	went	one	better	than
Rumford	by	carrying	out	accurate	experiments	to	measure	the	amount	of
work	needed	to	produce	a	specific	rise	in	temperature	of	a	certain
amount	of	water	–	one	of	his	experiments,	beautifully	simple	in	concept,
involved	heating	water	in	a	container	by	stirring	it	with	a	kind	of	paddle
wheel,	which	was	driven	through	a	cord	attached	to	a	falling	weight.
This	work,	and	the	work	of	Joule’s	contemporaries	such	as	Hermann
Helmholtz	in	Germany,	led	to	the	idea	of	the	conservation	of	energy.
This	says	that	energy	cannot	be	created	or	destroyed,	but	only
transformed	from	one	form	into	another.	The	energy	the	horse	needs	to



do	its	work	comes	from	the	hay	it	eats,	providing	chemical	fuel	which
combines	with	oxygen	to	power	its	muscles;	the	energy	stored	in	the	hay
in	a	chemical	form	comes	ultimately	from	sunlight;	and	so	on.	The
principle	of	conservation	of	energy	became	known	also	as	the	first	law	of
thermodynamics,	which	says	that	in	a	closed	system	(one	that	does	not
interact	in	any	way	with	the	outside	world,	another	physicists’
idealization,	like	a	frictionless	plane)	the	total	energy	remains	constant.
But,	as	the	example	of	the	cannon-boring	shows,	no	work-energy
transformation	is	perfect,	and	heat	is	always	dissipated	as	a	by-product,
so	that	some	energy	is	removed	from	circulation,	as	it	were.	As	heat
always	flows	from	a	hotter	place	to	a	cooler	place	(the	second	law	of
thermodynamics),	eventually,	in	any	closed	system,	all	the	energy	will
end	up	as	heat,	and	all	the	temperature	differences	will	smooth	out	to
leave	a	bland	and	featureless	system	where	nothing	interesting	happens.

What	is	now	known	as	the	second	law	of	thermodynamics	can	be
expressed	in	many	different	ways,	but	was	first	spelled	out	by	the	British
physicist	William	Thomson	(later	Lord	Kelvin)	in	1852.	The	essential
point	which	Thomson	drew	attention	to	is	this	idea	of	dissipation	–	that
although	the	way	the	natural	world	works	can	be	described	in	terms	of	a
great	engine	which	converts	heat	into	work	(or	into	motion,	which	is	the
same	thing),	there	must,	indeed,	always	be	some	heat	dissipated	in	the
process,	not	really	lost	but	spread	out	into	the	Universe	at	large,	raising
its	overall	temperature	by	a	tiny	bit.	This	goes	beyond	the	principle,	or
law,	of	conservation	of	energy	(the	first	law	of	thermodynamics)	because
now,	although	the	total	amount	of	energy	in	the	world	(by	which	the
Victorians	meant	what	we	would	now	call	the	Universe)	stays	the	same,
the	amount	of	useful	energy	is	always	decreasing.	This	implied	that



physicists	needed	a	way	to	quantify	the	amount	of	useful	energy
available	in	a	closed	system,	or	in	the	world	(the	Universe	at	large),	so
that	they	could	make	allowance	for	it	and	manipulate	it	in	their
equations.	That	led	Rudolf	Clausius,	in	Germany,	to	introduce	the
concept	of	entropy	in	the	mid-1860s.

The	simplest	way	to	picture	what	is	measured	by	entropy	is	to	think
in	terms	of	the	amount	of	order	there	is	in	a	system,	and	the	classic
example	of	this	is	to	imagine	a	box	that	is	divided	into	two	halves	by	a
sliding	partition.	One	half	of	the	box	is	filled	with	gas,	and	the	other	half
is	initially	empty	–	a	vacuum.	This	is	a	system	which	has	a	certain
amount	of	order,	or	structure,	because	there	is	a	distinction	between	the
two	halves	of	the	container.	If	you	drop	a	microscopic	robot	probe	into
the	box	at	random,	it	can	tell	which	side	of	the	partition	it	is	by	testing
to	see	if	it	is	surrounded	by	gas	or	by	vacuum.	Now	imagine	sliding	the
partition	out.	We	all	know,	from	everyday	experience,	what	will	happen.
The	gas	spreads	out	to	fill	the	box	uniformly.	There	is	less	order	(or,	if
you	like,	more	disorder)	in	the	system	now,	because	from	inside	the	bulk
of	the	gas	itself	there	is	no	way	to	tell	which	half	of	the	box	you	are	in.
The	temperature,	as	it	happens,	will	also	have	fallen,	as	the	gas	expands
into	the	vacuum.	Now,	you	can	certainly	restore	the	original	ordered
state	of	the	gas	in	the	box,	by	pushing	all	the	gas	up	one	end	of	the	box
with	a	piston.	This	will	also	heat	the	gas	back	up	to	its	original
temperature	as	it	is	compressed.	But	in	order	to	do	so,	the	piston	has	to
do	work,	and	in	the	process	heat	is	inevitably	dissipated	through	friction
and	so	on.	So	although	the	box,	a	closed	system,	is	restored	to	its
original	state,	in	the	Universe	at	large	more	heat	has	been	dissipated	as	a
result,	so	the	world	has	changed.



Figure1.3	when	we	look	at	a	large	number	of	particles,	such	as	atoms	of	gas	in	a	box,	the	direction	of
time	becomes	obvious.	when	a	partition	is	removed,	gas	spreads	out	to	fill	the	whole	box,	and	we	have
no	difficulty	telling	which	is	‘before’	and	which	is	‘after’,	even	without	an	arrow	of	time	being	indicated.

Extending	the	analogy	slightly,	a	chess	board	painted	in	alternating
black	and	white	squares	has	a	certain	order	to	it.	If	exactly	the	same
amount	of	paint	is	mixed	up	and	used	to	paint	the	board	a	uniform	grey,
there	is	less	order.	You	can	imagine	a	machine	delicate	enough	to
unscramble	the	mixed-up	molecules	of	paint	back	into	pure	black	and
pure	white	–	but,	once	again,	that	machine	cannot	be	100	per	cent
efficient	and	must	dissipate	heat	into	the	Universe	at	large	as	it	does	its
job.

Entropy	measures	the	amount	of	order	in	a	system,	with	increasing
disorder	corresponding	to	increasing	entropy.	Since	we	know	that	in	the
real	world	disorder	increases	in	any	closed	system	(things	wear	out)	as
time	passes,	the	inevitable	increase	in	entropy	defines	a	direction	of
time,	an	arrow	pointing	from	the	ordered	past	into	the	disordered	future.
As	this	process	seemed	inevitable	and	universal,	the	Victorian
thermodynamicists	envisaged	an	ultimate	fate	of	the	Universe	in	which
all	useful	energy	had	been	converted	into	heat,	and	everything	was	a
bland	mixture	of	stuff	at	one	uniform	temperature,	a	bleak	scenario	that
they	called	the	‘heat	death’	of	the	Universe.6

Life,	of	course,	seems	to	defy	this	process,	by	creating	order	and
structure	out	of	disordered	(or	at	least,	less	ordered)	materials.	A	plant
builds	its	structure,	and	may	make	beautiful	flowers,	out	of	carbon



dioxide,	water,	and	a	few	traces	of	other	chemicals.	But	it	only	does	so

with	the	aid	of	sunlight,	energy	from	an	outside	source.	The	Earth,	and
in	particular	life	on	Earth,	is	not	a	closed	system.	It	is	possible	to	show,
using	the	equations	developed	by	Thomson,	Clausius	and	their
contemporaries,	that	anywhere	in	the	Universe	that	a	pocket	of	order
appears,	it	always	does	so	at	the	cost	of	more	disorder	being	produced
somewhere	else.	When	we	use	a	freezer	compartment	in	a	refrigerator	to
make	blocks	of	ice,	seemingly	in	defiance	of	the	second	law	of
thermodynamics,	we	do	so	only	because	an	engine	is	at	work	pumping
fluids	around	the	refrigerator	and	generating	more	heat	than	is	‘lost’	by
the	freezing	water.	The	cooling	process,	going	on	in	the	tubes	inside	the
fridge,	is	essentially	the	same	as	the	expansion	and	cooling	that	happens
to	the	gas	in	our	imaginary	box	when	the	partition	is	removed;	the
warming	process,	which	goes	on	in	the	pipes	outside	the	fridge,	at	the
back,	is	essentially	the	same	as	the	compression	of	that	gas	back	into	its
original	volume,	making	it	hotter.	Then	the	heat	dissipates	into	the	air
before	the	fluid	flows	back	into	the	pipes	inside	the	fridge.	If	a
refrigerator	is	left	running	in	a	sealed	room	with	perfectly	insulated
walls,	and	the	door	of	the	fridge	is	left	open,	the	room	will	get	hotter,
not	colder,	because	of	the	work	being	done	by	the	engine	which	drives
the	cooling	process	going	on	inside	the	fridge.

On	the	macroscopic	scale,	in	accordance	with	laws	derived	by
experiment	and	observation	in	exactly	the	approved,	tried	and	tested
scientific	way,	the	Universe	operates	in	an	irreversible	way.	You	can
never	put	things	back	the	way	they	used	to	be.	But	right	there	in	our
simple,	classic	example	of	thermodynamic	irreversibility,	entropy	and
the	arrow	of	time,	the	box	of	gas	with	the	sliding	partition,	we	see	the



apparent	dichotomy	between	the	macroscopic	world	and	the	microscopic
world	with	stark	clarity.	At	the	level	of	the	atoms	and	molecules	that
make	up	the	gas	(actually	sub-microscopic,	but	nobody	worries	about
that),	every	collision	is,	according	to	Newton’s	laws,	precisely	reversible,
like	the	collisions	between	balls	on	a	pool	table.	We	can	imagine
opening	the	partition,	letting	the	gas	fill	the	entire	box,	then	waving	a
magic	wand	to	reverse	the	motion	of	every	atom	and	molecule	of	gas.
There	would	be	nothing	forbidden	by	Newton’s	laws	in	the	pattern	of
reversed	motion.	Blindly	obeying	those	laws,	the	atoms	and	molecules
would	then	retrace	their	paths	back	into	one	half	of	the	box,	no	matter
how	many	collisions	were	involved	along	the	way.	Yet	we	never	see
systems	acting	like	this	in	the	real	world,	with	all	the	gas	in	a	room,	for
example,	suddenly	moving	to	one	end	of	the	room.	This	dichotomy
between	the	laws	that	apply	on	large	and	small	scales	was	a	huge	puzzle
for	physics	at	the	end	of	the	nineteenth	century.

The	people	who	tried	to	resolve	this	puzzle	had	to	develop	a	new
language	(as	we	have	already	begun	to	see)	and	a	new	way	of	thinking
about	the	physical	world.	One	of	the	key	concepts,	central	to	the	story
we	have	to	tell	here,	is	the	idea	of	an	attractor.	If	you	release	gas	into	a
box,	either	by	sliding	a	partition	in	the	way	we	have	described,	or
through	a	hole	in	one	wall	of	the	box,	the	end	result	is	that	the	gas
settles	down	in	equilibrium,	spread	evenly	through	the	box.	This	state
corresponds	to	the	maximum	entropy	available	to	the	system,	and	it	is
the	same	regardless	of	how	the	gas	got	into	the	box–	it	doesn’t	matter,
for	example,	which	wall	of	the	box	has	the	hole	which	allows	gas	in,	or
whereabouts	on	the	wall	the	hole	is	made.	The	final,	equilibrium	state
(which	also	corresponds	to	the	state	of	minimum	energy)	is	said	to	be	an



attractor,	because	the	system	acts	as	if	it	is	attracted	towards	that	state.
Once	that	state	is	reached,	there	is	no	way	to	tell	how	the	system	got
into	it	–	there	is	no	history	written	into	the	final,	equilibrium	state.

More	familiar	systems	can	also	be	described	in	this	way.	If	you	roll	a
marble	into	a	pudding	basin,	after	a	few	circuits	and	oscillations	the
marble	will	end	up	stationary	at	the	bottom	of	the	bowl;	that	state	is	an
attractor	for	this	system.	But	even	in	such	a	simple	system,	the	attractor
need	not	be	quite	that	simple.	If	the	marble	is	rolled	into	the	upturned
brim	of	a	sombrero,	it	will	end	up	somewhere	in	the	valley	made	by	the
upturned	brim,	but	all	the	points	in	a	circle	around	the	floor	of	that
valley	are	part	of	the	attractor	(sometimes	called	the	’Mexican	hat
attractor’),	since	they	all	correspond	to	the	same	minimum	energy	state.
For	an	imaginary	perfect,	frictionless	pendulum	(a	so-called	ideal
pendulum),	swinging	to	and	fro	is	an	attractor;	for	a	real	pendulum,
where	friction	dissipates	energy,	the	swing	will	slow	and	eventually	stop,
with	the	pendulum	hanging	vertically;	this,	too,	can	be	thought	of	as	an
attractor	state.	It	doesn’t	matter	how	you	set	the	pendulum	swinging
(left	to	right,	forward	and	back,	or	around	in	circles),	if	you	wait	it	will
settle	down	into	the	same	final	state,	with	no	record	of	how	it	got	there.
In	the	language	of	thermodynamics,	by	the	time	a	system	reaches
equilibrium	it	has	forgotten	its	initial	conditions.	All	that	matters	is
where	it	is	now.



Figure	1.4	Left	to	their	own	devices,	systems	(even	a	’system’	as	simple	as	a	marble	in	a	mixing	bowl)
tend	to	sink	to	a	state	of	minimum	energy	and	maximum	entropy	–	provided	there	is	no	input	of	energy
from	outside.

But	when	does	a	system	reach	equilibrium?	In	the	real	world,	there	is
no	such	thing	as	a	perfect	insulator,	so	our	box	of	gas	will	always	be
exchanging	heat	with	the	outside	world.	The	swinging	pendulum
grinding	to	a	halt	might	seem	a	better	example	of	a	system	approaching
equilibrium,	but	even	that	is	being	jostled	by	molecules	of	air	colliding
with	it,	and	even	if	you	put	it	in	a	vacuum	chamber	there	will	be	some
interaction	with	the	outside	world	through	the	string	of	the	pendulum,
which	has	to	be	fastened	to	something.	The	truth	is,	there	is	no	such
thing	as	an	isolated	system	(except	for	the	entire	Universe),	and	no
system	is	ever	in	perfect	equilibrium.	It	may	get	very	close	to
equilibrium	–	as	close	as	you	like,	if	you	wait	long	enough	–	but	the
equilibrium	is	never	literally	perfect.

Figure	1.5	The	state	that	systems	settle	into	is	called	an	attractor.	In	the	example	shown	on	p.	28,	the
attractor	is	a	single	point	at	the	bottom	of	the	bowl.	But	an	attractor	can	also	be	a	spread-out	region,	as
in	this	illustration.	The	marble	on	the	hill	is	bound	to	roll	off	into	the	valley,	but	everywhere	in	the
valley	bottom	is	equally	attractive.

This	is	no	mere	pedantry.	Borrowing	an	example	from	Ilya	Prigogine

and	Isabelle	Stengers,7	if	two	containers	are	joined	by	a	relatively
narrow	pipe	and	filled	with	a	mixture	of	hydrogen	gas	and	hydrogen



sulphide	gas,	then	in	equilibrium,	with	everything	at	the	same
temperature,	there	will	be	a	uniform	mixture	of	both	gases	in	each
container.	If,	however,	one	of	the	containers	is	kept	slightly	warmer	than
the	other,	the	gas	mixture	begins	to	separate,	with	lighter	hydrogen
molecules	concentrating	in	the	hotter	container,	and	heavier	hydrogen
sulphide	molecules	concentrating	in	the	cooler	container	(the	same	sort
of	thing	happens	for	any	two	gases	with	different	molecular	weights,	not
just	for	hydrogen	and	hydrogen	sulphide).	A	very	small	deviation	from
equilibrium	has	produced	order	out	of	chaos.	Away	from	equilibrium,	a
flow	of	energy	can,	under	the	right	circumstances,	create	order
spontaneously.	This	is	a	crucial	insight	into	our	own	existence,	since
there	is	no	denying	that	we	are	ordered	creatures,	and	there	is
overwhelming	evidence	that	the	Universe	began	in	a	state	of	much	less
order.	In	general,	a	system	that	is	close	to	equilibrium	will	be	attracted
to	a	state	where	the	rate	at	which	entropy	is	being	produced	is	a	minimum	–
but	this	insight	did	not	become	clear	until	well	into	the	twentieth
century.	For	the	same	reason	that	physicists	after	Newton	concentrated
first	on	solving	simple	problems	that	were	tractable	using	his	equations
and	laws	of	motion	(because	they	were	the	easiest	problems	to	solve),
thermodynamicists	concentrated	at	first	on	studying	equilibrium
systems,	and	developing	laws	and	equations	(such	as	the	second	law	of
thermodynamics)	to	describe	them.	It	was	this	approach	that	led	to	the
development	of	an	understanding	of	thermodynamics	in	terms	of
probability,	extending	its	scope	under	the	name	statistical	mechanics.

A	great	deal	of	this	work	derived	from	attempts	to	describe
mathematically	the	behaviour	of	gases,	because	gases	are	relatively
simple	systems	involving	collisions	between	molecules	more	or	less	in



accordance	with	Newton’s	laws,	and	so	there	was	some	hope	of	being
able	to	solve	the	equations	for	these	cases.	What	became	known	as	the
kinetic	theory	of	gases	(because	‘kinetic’	implies	motion,	in	this	case	of
the	component	molecules)	was	developed	by	several	people	whose	ideas
cross-fertilized	each	other	in	the	second	half	of	the	nineteenth	century.
One	main	thread	of	the	story	starts	with	Clausius,	who	came	up	with	the
idea,	in	1858,	of	the	‘mean	free	path’,	which	is	the	average	distance
travelled	by	a	molecule	between	collisions	in	a	gas	at	a	certain
temperature	and	pressure.	He	also	introduced	the	idea	that	molecules
have	an	‘effective	radius’	so	that	they	behave	like	little	hard	balls	with
that	radius.	These	ideas	were	taken	up	and	developed	by	Maxwell,	who
went	further	than	Clausius	in	allowing	for	a	range	of	speeds	among	the
molecules	involved	in	the	collisions.	He	showed	how,	with	a	suitable
choice	of	all	these	properties,	many	of	the	observed	features	of	the
behaviour	of	gases	could	be	described	by	relatively	simple	equations.	In
turn,	Maxwell’s	work	provided	the	inspiration	for	further	developments
carried	out	by	Ludwig	Boltzmann	in	Germany,	who	was	the	one	who
brought	everything	together	in	the	first	version	of	statistical	mechanics.
On	the	other	side	of	the	Atlantic,	in	the	United	States,	Josiah	Willard
Gibbs	also	made	major	contributions	to	the	development	of	this	new
branch	of	science.

We	don’t	need	to	go	into	all	the	details	of	statistical	mechanics	here,
but	we	can	give	you	an	insight	into	the	key	concept	of	probability,	as
applied	by	Boltzmann,	using	a	very	simple	example	(a	mental	‘model’)
related	to	the	gas	in	a	box	model	used	earlier.	The	puzzle,	remember,	is
why,	since	it	is	not	forbidden	by	the	Newtonian	laws	of	mechanics,	we
never	see	all	the	gas	move	into	one	half	of	the	box.	What	is	so	special
about	the	state	in	which	gas	is	divided	more	or	less	evenly	to	fill	the



about	the	state	in	which	gas	is	divided	more	or	less	evenly	to	fill	the
box?	To	get	a	feel	for	what	is	going	on,	imagine	first	that	we	have	just
two	particles	to	put	in	the	box.	They	move	about	in	accordance	with
Newton’s	laws,	bouncing	off	one	another	and	ricocheting	off	the	walls	of
the	box.	If	we	take	a	snapshot	of	the	inside	of	the	box	at	any	instant,
how	might	the	particles	be	arranged?	There	are	two	ways	to	have	one
particle	in	each	half	of	the	box	–	particle	A	on	the	left	and	B	on	the	right,
or	B	on	the	left	and	A	on	the	right.	And	there	are	two	ways	in	which
both	particles	can	be	in	one	half	of	the	box	-both	on	the	left,	or	both	on
the	right.

So	there	are	just	four	possible	states	for	the	box	to	be	in,	using	this
criterion.	If	each	state	is	equally	likely	(and	there	is	no	reason	to	think
otherwise),	then	there	is	a	25	per	cent	chance	of	seeing	both	particles	on
the	left,	a	25	per	cent	chance	of	seeing	both	on	the	right,	and	a	50	per
cent	(2	×	25	per	cent)	chance	of	seeing	one	on	each	side.	With	those
odds,	if	you	take	a	quick	look	at	the	box	you	will	not	be	surprised	to	see
any	of	these	possibilities	at	that	particular	moment	in	time.

Now	carry	out	the	same	process	with	four	particles.	To	keep	it
simple,	just	concentrate	on	one	half	of	the	box	this	time.	There	are	four
ways	to	have	one	particle	on	the	left	and	the	rest	all	on	the	right	(taking
each	of	the	particles	A,	B,	C	and	D	as	the	odd	one	out	in	turn).	But	there
are	six	ways	to	have	a	pair	of	particles	on	the	left-hand	side	(AB,	AC,
AD,	BC,	BD,	CD).	Already,	it	is	slightly	more	likely,	with	odds	of	4:6,
that	you	will	see	equal	numbers	of	particles	in	each	half	of	the	box	than
one	particle	on	its	own	–	and	there	is	still	only	one	way	in	which	you
can	have	no	particles	at	all	on	the	left.	The	odds	escalate	dramatically	in
favour	of	an	even	distribution	as	the	number	of	particles	increases.	We’ll
let	you	work	through	the	numbers	if	you	wish,	but	for	just	eight	particles



let	you	work	through	the	numbers	if	you	wish,	but	for	just	eight	particles
there	is	still	only	one	way	for	all	the	‘gas’	to	be	in	the	right-hand	side	of
the	box,	but	seventy	ways	to	share	out	the	particles	evenly	between	the
two	halves.	Boltzmann	argued	that	we	see	gas	spreading	out	to	fill	a	box,
rather	than	huddling	up	in	one	corner,	because	this	is	overwhelmingly
more	likely	than	the	alternative.	The	alternative	is	not	impossible,	just
very	unlikely.

The	simple	sketch	we	have	given	here	scarcely	does	justice	to
Boltzmann’s	work,	which	included	the	derivation	of	a	mathematical

equation	relating	entropy	to	probability,8	and	put	statistical	mechanics
on	a	proper	quantitative	footing.	But	we	hope	it	gives	you	a	feel	for	what
is	going	on.	The	key	point,	of	course,	is	just	how	many	particles	are
involved	in	the	collisions	going	on	in	even	a	small	box	of	gas,	and	just
how	unlikely	it	is,	as	a	result,	that	they	will	all	end	up	in	one	end	of	the
box.	It’s	no	coincidence	that	the	first	real	understanding	of	the	numbers
involved	also	emerged	during	the	1860s,	since	all	of	these	ideas	fed	off
each	other.	This	thread	went	back	to	the	work	of	the	Italian	Amadeo
Avogadro,	who	suggested,	in	1811,	that	equal	volumes	of	gas	at	the
same	temperature	and	pressure	contain	equal	numbers	of	particles.	He
was	responsible	for	the	idea	that	a	box	of	any	gas	at	a	particular
temperature	and	pressure	always	contains	the	same	number	of	little	hard
spheres	(we	would	now	equate	these	with	molecules)	bouncing	around
and	colliding	with	one	another	and	the	walls	of	the	box.	It	doesn’t
matter	if	the	gas	is	oxygen,	carbon	dioxide,	something	else,	or,	like	the
air	we	breathe,	a	mixture	of	several	gases;	all	that	matters	in	this	context
is	the	number	of	molecules	involved.

Hardly	surprisingly,	it	took	a	long	time	for	anyone	to	come	up	with



an	accurate	figure	for	the	kinds	of	numbers	of	molecules	required	on	this
model	–	if	anything,	the	surprise	is	that	it	didn’t	take	longer.	There	are
actually	several	ways	to	tackle	the	problem,	but	we’ll	describe	just	one,
used	by	the	Austrian	Joseph	Loschmidt	in	the	mid-1860s	to	calculate	the
number	of	molecules	in	one	cubic	centimetre	of	gas	at	a	temperature	of
o	°C	and	standard	atmospheric	pressure	(this	is	known	as	Loschmidt’s
number).	He	started	from	the	assumption	that	there	is	a	lot	of	empty
space	in	a	gas,	and	that	each	molecule	occupies	a	volume	specified	in
terms	of	its	effective	radius.	The	pressure	could	be	calculated	from	the
kinetic	theory,	in	terms	of	the	mean	free	path,	the	average	speed	of	the
molecules,	and	so	on.	If	there	were	a	few,	large	molecules	in	the	gas,
there	would	be	a	long	mean	free	path;	if	there	were	many	smaller
molecules,	there	would	be	a	shorter	mean	free	path.	To	make	the	model
match	the	way	pressure	changes	in	a	real	gas,	only	one	value	of	the
mean	free	path,	and	therefore	one	value	for	the	total	number	of	particles
present,	would	do.	The	modern	value	for	Loschmidt’s	number	is	2.687	×

1019	(1019	is	a	1	followed	by	19	zeros,	or	10	billion	billion).	And	that,
remember,	is	the	number	of	molecules	in	each	cubic	centimetre	of	air	at
sea	level	on	a	freezing	cold	day	–	which	also	gives	you	some	idea	just
how	small	atoms	and	molecules	are.	To	put	that	in	perspective,	there	are

about	300	billion	(300	×	109)	bright	stars	in	our	Milky	Way	Galaxy,	and
roughly	the	same	number	of	bright	galaxies	visible	to	our	telescopes.	So

there	are,	multiplying	this	number	by	itself,	about	90,000	×	1018	or

9,000	×	1019	bright	stars	in	the	entire	visible	Universe.	Dividing	this	by
Loschmidt’s	number,	we	find	that	in	round	terms	450	cubic	centimetres

of	cold	air,	less	than	half	a	litre,9	contains	as	many	molecules	as	there
are	stars	in	the	Universe.	And	those	molecules	are	so	close	together	that



the	mean	free	path	between	collisions,	moving	at	an	average	speed	of
just	over	460	metres	per	second,	is	just	13	millionths	of	a	metre.
Properly	applied	to	such	large	numbers	of	molecules,	the	statistics	tell	us
that	you	would	have	to	wait	for	far	longer	than	the	age	of	the	Universe
to	have	much	chance	of	seeing	all	the	gas	in	even	a	matchbox-sized
container	congregate	in	one	end	of	the	box.

And	yet,	this	still	does	not	say	that	such	an	event	is	impossible.
Boltzmann	thought	he	had	found	a	way	to	prove	that	it	is	impossible,
and	to	put	the	arrow	of	time	into	thermodynamics	in	this	way.	But	it
turned	out	he	was	wrong.	Boltzmann	set	up	equations	to	describe	the
overall	behaviour	of	a	box	of	gas,	described	in	terms	of	a	proper
statistical	averaging	of	the	properties	of	the	individual	molecules,	rather
than	attempting	to	trace	the	interactions	of	every	single	molecule	in	the
box.	Putting	some	of	this	into	everyday	language,	his	equations
described	how	the	properties	of	the	molecules	of	gas	in	the	box	get
averaged	out	as	time	passes.	For	example,	when	the	gas	is	first	let	in	to
the	box,	some	molecules	will	be	moving	faster	than	others,	which
corresponds	to	them	having	a	higher	temperature,	so	that	the	gas	in	one
corner	of	the	box	may	be	hotter	than	the	rest	of	the	gas.	But	when	a	fast-
moving	molecule	collides	with	a	slow-moving	molecule,	the	energy	of
motion	of	the	two	molecules	(their	kinetic	energy)	tends	to	get	shared
out	between	them,	so	that	you	end	up	with	two	molecules	moving	at	a
middling	speed	(think	of	a	fast-moving	pool	ball	colliding	with	a
stationary	pool	ball,	without	any	spin	on	the	ball).	So	the	hotter
molecules	would	cool	down	and	the	cooler	molecules	would	warm	up,
until	the	box	of	gas	was	at	one	uniform	temperature,	in	thermodynamic
equilibrium.	And	this	would	be	a	swift	and	efficient	process,	since	each



molecule	in	air	at	o	°C	experiences	a	little	under	four	million	collisions
every	second.	The	equations	set	up	by	Boltzmann	clearly	showed
random,	natural	processes	leading	to	thermodynamic	equilibrium	along
a	one-way	street.

So	why	do	we	live	in	an	orderly	world?	Boltzmann	eventually	went
much	further	than	anyone	else	by	suggesting	that	the	heat	death	of	the
Universe	at	large	had	already	occurred,	and	that	the	Universe	at	large
must	be	in	equilibrium	in	this	way.	How	then	could	a	place	like	the
Earth,	far	from	equilibrium	and	bearing	life,	exist?	His	answer	was	that
the	entire	region	of	space	we	can	see	and	investigate	with	our	telescopes
(which,	at	the	end	of	the	nineteenth	century,	amounted	to	no	more	than
the	local	region	of	the	island	of	stars	we	call	the	Milky	Way	Galaxy)
must	represent	a	small	(on	the	scale	of	the	Universe),	local	fluctuation
away	from	equilibrium.	In	our	hypothetical	box	of	gas,	in	equilibrium,
there	could,	just	by	chance,	be	occasions	when	more	molecules	were
moving	from	left	to	right	in	the	box	than	from	right	to	left,	briefly
increasing	the	density	of	gas	in	the	right-hand	half	of	the	box	before	it
got	smoothed	out	again	by	thermodynamic	processes.	Boltzmann	said
that	the	visible	part	of	the	Universe	was	equivalent	to	such	a	temporary,
local	fluctuation	in	a	much	bigger	cosmos.	In	his	Lectures	on	Gas

Theory,10	he	wrote:
We	have	the	choice	of	two	kinds	of	picture.	Either	we	assume	that	the	whole	universe	is	at	the	present	moment	in	a	very

improbable	state.	Or	else	we	assume	that	the	aeons	during	which	this	improbable	state	lasts,	and	the	distance	from	here

to	Sirius	[one	of	the	nearest	stars],	are	minute	if	compared	with	the	age	and	size	of	the	whole	universe.	In	such	a

universe,	which	is	in	thermal	equilibrium	as	a	whole	and	therefore	dead,	relatively	small	regions	of	the	size	of	our	galaxy

will	be	found	here	and	there;	regions	(which	we	may	call	‘worlds’)	which	deviate	significantly	from	thermal	equilibrium

for	relatively	short	stretches	of	those	’aeons’	of	time.	Among	these	worlds	the	probabilities	of	their	state	(i.e.	the	entropy)

will	increase	as	often	as	they	decrease.	In	the	universe	as	a	whole	the	two	directions	of	time	are	indistinguishable,	just	as

in	space	there	is	no	up	or	down.	However,	just	as	at	a	certain	place	on	the	earth’s	surface	we	can	call	’down’	the	direction

towards	the	centre	of	the	earth,	so	a	living	organism	that	finds	itself	in	such	a	world	at	a	certain	period	of	time	can	define

the	’direction’	of	time	as	going	from	the	less	probable	state	to	the	more	probable	one	(the	former	will	be	the	’past’	and	the



the	’direction’	of	time	as	going	from	the	less	probable	state	to	the	more	probable	one	(the	former	will	be	the	’past’	and	the

latter	the	’future’),	and	by	virtue	of	this	definition	he	will	find	that	his	own	small	region,	isolated	from	the	rest	of	the

universe,	is	’initially’	always	in	an	improbable	state.	It	seems	to	me	that	this	way	of	looking	at	things	is	the	only	one

which	allows	us	to	understand	the	validity	of	the	second	law,	and	the	heat	death	of	each	individual	world,	without

invoking	a	unidirectional	change	of	the	entire	universe	from	a	definite	initial	state	to	a	final	state.

It’s	unfortunate	that	Boltzmann	chose	gravity	as	his	example	of	a	way	to
obtain	a	preferred	direction	in	space,	since,	as	we	have	mentioned,	it	is
the	influence	of	gravity	in	the	Universe	at	large	that	turns	some	of	the
traditional	ideas	about	entropy	on	their	heads	on	such	large	scales.	And
it’s	ironic	that	he	should	discard	the	idea	of’a	unidirectional	change	of
the	entire	universe	from	a	definite	initial	state	to	a	final	state’,	since	that
is	a	succinct	summary	of	the	currently	favoured	Big	Bang	model	of	the
Universe.	Most	of	all,	though,	Boltzmann’s	ideas	look	outdated	because
we	can	now	probe	far	beyond	Sirius	(a	mere	8.6	light	years	away)	to
investigate	the	properties	of	the	Universe	on	a	scale	often	billion	light
years,	with	no	sign	of	the	uniform,	dead	cosmos	that	Boltzmann	invokes.
But	beware	of	laughing	too	much	at	his	quaint,	old-fashioned	ideas.
There	are	reputable	cosmologists	today	who	argue	that	our	entire	visible
Universe	is	just	one	of	many	expanding	bubbles	in	a	vastly	greater,
perhaps	infinite,	more	or	less	uniform	cosmos.	These	ideas	are	not	based
on	thermodynamic	principles,	but	they	serve	as	a	reminder	that	although
we	may	laugh	at	Boltzmann	for	being	so	parochial	as	to	think	8.6	light
years	was	a	large	distance,	in	a	truly	infinite	cosmos	even	ten	billion
light	years	may	be	seen	as	the	cosmic	equivalent	of	a	stroll	down	to	the
chemist’s	shop.

But	none	of	this	is,	strictly	speaking,	relevant	to	our	story.	For,	as	we
have	hinted,	there	is	a	flaw	in	Boltzmann’s	argument	–	not	in	his
philosophical	musings,	but	in	the	mathematics	he	used	to	describe	the
behaviour	of	gases.	Boltzmann	started	out	from	the	assumption	that



behaviour	of	gases.	Boltzmann	started	out	from	the	assumption	that
molecules	which	are	about	to	collide	with	one	another	don’t	know
anything	about	each	other	–	their	motion	is	uncorrelated,	and	subject	to
what	is	sometimes	called	‘molecular	chaos’,	where	the	term	chaos	is
being	used	in	the	everyday	sense,	not	in	the	sense	that	it	is	used	later	in
this	book.	But	after	the	collision,	of	course,	the	paths	followed	by	the
molecules	are	correlated,	since	they	have	exchanged	energy	and
momentum	in	the	collision.	So	Boltzmann	had	unconsciously	built	in	a
microscopic	arrow	of	time	to	his	calculations	from	the	outset,	which
meant	that	it	was	hardly	surprising	that	a	macroscopic	arrow	of	time
emerged	at	the	end	of	the	calculation.	But	there	is	no	arrow	of	time	in
Newton’s	laws,	which	are	used	to	describe	the	collisions	–	they	work
equally	well	when	the	entire	system	is	run	‘backwards	in	time’.	You	can’t
have	correlations	working	one	way	and	not	the	other.	Or,	to	put	it
another	way,	as	Laplace	would	have	argued,	the	positions	and	velocities
of	all	the	molecules	in	the	gas	at	any	instant	have	stored	in	them	a
‘memory’	of	the	entire	past	history	of	the	gas,	so	that	the	behaviour	of
every	molecule	is	correlated	with	the	behaviour	of	every	other	molecule.

The	flaw	in	Boltzmann’s	argument	was	pointed	out	by	Loschmidt	in
the	mid-1870s,	soon	after	the	original	formulation	of	Boltzmann’s	idea
was	put	forward.11	The	problem	was	taken	up	and	developed	by	Henri
Poincaré	(1854-1912),	a	French	mathematician	and	physicist.	Poincare
took	Laplace’s	argument	to	its	logical	conclusion.	He	proved,	using	the
full	rigour	of	mathematics,	that	if	you	have	a	box	of	gas	containing	a
definite	number	of	particles	(as	many	as	you	like,	as	long	as	it	is	not
actually	infinite)	and	the	particles	strictly	obey	Newton’s	laws	of	motion,
then	after	a	sufficiently	long	interval	of	time	the	distribution	of	the



particles	in	the	box	must	return	to	its	original	state,	with	each	particle
moving	in	the	same	direction	and	at	the	same	speed	that	it	was	moving
to	start	with.	You	can	make	a	useful	analogy	with	shuffling	a	pack	of
cards.	Whatever	state	you	start	out	in	(whatever	order	the	cards	are	in),
at	first	shuffling	will	break	up	the	initial	pattern.	But	if	you	keep
shuffling	long	enough,	and	the	shuffling	is	genuinely	random,	there	must
come	a	time	when	the	pack	just	happens	to	be	back	in	the	order	it
started	out.	And	since	the	starting	time	is	arbitrary,	this	means	that	the
pack	of	cards	or	the	box	of	gas	must	repeatedly	pass	through	every
possible	state,	including	those	rare	occasions	when	all	the	gas	is	in	one
end	of	the	box,	and	vast	numbers	of	occasions	when	it	is	spread	out
evenly	through	the	box,	but	with	the	particles	in	slightly	different
positions.	All	the	allowed	states	of	the	gas	in	the	box	recur	repeatedly,
with	a	characteristic	periodicity	called	the	Poincare	recurrence	time,	or
Poincare	cycle	time.	If	the	entropy	goes	up	for	a	while,	it	must	inevitably
come	down	again	later	on,	to	bring	the	gas	back	to	its	original	state	(the
basis	of	Boltzmann’s	Universe).	And	this	recurrent,	cyclic	behaviour	is	a
direct	result	of	the	strict	application	of	Newton’s	laws,	in	which	past	and
future	have	equal	status.

But	the	timescales	involved	are	beyond	comprehension.	For	an
isolated	box	of	gas	containing	N	molecules,	the	time	between

recurrences,	Poincare	proved,	will	be	10N	seconds.	Remember	that	a
single	cubic	centimetre	of	air	at	sea	level	and	zero	degrees	Celsius

contains	more	than	1019	molecules.	The	time	you	would	have	to	wait	to
see	the	gas	in	a	container	that	size	run	through	its	cycle	is	10	to	the

power	1019	seconds,	and	1019	is	a	1	followed	by	ten	billion	billion	zeros.

The	entire	age	of	the	Universe	since	the	Big	Bang	is	only	about	1017



seconds.	If	you	divide	17	by	1019,	you	get	some	idea	of	just	how	tiny	the
probability	is	of	seeing	the	gas	in	the	box	deviate	from	thermodynamic
equilibrium	during	the	entire	life	of	the	Universe	to	date,	as	long	as	it
really	is	insulated	from	the	outside	world.	Even	if	the	box	contained	only
52	particles,	the	same	as	the	number	of	cards	in	a	pack,	the	cycle	time

would	be	1052	seconds,	which	is	1035	times	the	age	of	the	Universe.12

In	the	light	of	all	this,	thermodynamics,	and	in	particular	the	idea	of
increasing	entropy,	became	statistical	ideas	–	in	the	real	world,	given	the
number	of	particles	involved,	it	is	overwhelmingly	probable	that	entropy
will	rise,	but	it	is	possible	(in	the	sense	that	it	is	not	forbidden	by	the
laws	of	physics)	for	entropy	to	fall.	This	was	not	something	that	all
physicists	found	easy	to	live	with	at	first.	Two	centuries	after	Newton
had	published	the	Principia,	and	seventy-five	years	after	Laplace,	they
were	being	told	that	the	world	is	not	deterministic	in	the	simplest	sense
after	all,	and	that	chance	and	probability	must	be	taken	into	account
when	trying	to	describe,	or	calculate,	the	behaviour	of	macroscopic
systems.	Gradually,	though,	they	got	used	to	the	idea,	and	succeeding
generations	were	brought	up	to	regard	it	as	natural,	and	even	obvious.
But	while	these	ideas	were	being	assimilated	into	the	mainstream	of
science,	Poincaré	was	moving	on	to	other	problems.	In	the	late	1880s,	he
discovered	something	so	shocking	about	the	workings	of	Newton’s	laws
themselves	that	the	implications	were	largely	ignored	for	the	best	part	of
seventy	years,	the	Biblical	’three	score	years	and	ten’	of	a	human
lifetime.	He	found,	in	essence,	that	Newton	had	been	right	to	worry
about	the	stability	of	the	orbits	of	the	planets,	and	that	Laplace	had	been
wrong	to	think	that	he	had	solved	the	puzzle.	Poincare	showed	that	the
three-body	problem	(let	alone	the	N-body	problem)	often	cannot	be



solved	even	by	the	familiar	approximation	techniques,	and	that
seemingly	simple	orbits	obeying	the	familiar	Newtonian	laws	of
mechanics	and	gravity	can	behave	in	a	chaotic	and	unpredictable
(literally	unpredictable)	fashion.



2
The	Return	of	Chaos

There’s	a	snag	with	the	iterative	technique	used	to	provide	‘solutions’	in
situations	like	the	three-body	problem.	It	doesn’t	always	work,	and	you
can’t	always	tell	in	advance	whether	or	not	it	is	going	to	work.	The
technique	used	to	‘solve’	the	relevant	differential	equations	(which,
remember,	cannot	be	solved	analytically)	involves	successive
approximations,	in	which	the	first	step	in	the	calculation	is	known	to
give	only	an	approximate	answer,	the	second	step	(hopefully)	adds	in	a
correction	to	give	you	a	more	accurate	approximation	to	reality,	the
third	step	gives	an	even	better	approximation	to	reality,	and	so	on	until
the	approximation	is	as	good	as	you	want	it	to	be	for	whatever	purpose
you	have	in	mind.	But	you	can	never	get	exactly	the	‘answer’	that	fits
perfectly	the	behaviour	of	the	objects	in	the	real	world	that	you	are
interested	in.

What	you	are	doing	is	adding	up	a	series	of	numbers	–	in	principle,
an	infinitely	long	series	of	numbers.	Mathematicians	are	interested	in
such	infinite	series	in	their	own	right,	regardless	of	their	possible
relevance	to	studies	of	the	behaviour	of	things	like	planets	in	orbit
around	the	Sun,	and	they	know	plenty	of	infinite	series	that	do	indeed
add	up	in	this	well-behaved	way	to	give	an	ever	better	approximation	to
some	specific	number.	A	good	example	is	one	of	the	standard	ways	to



work	out	an	approximate	value	for	the	number	π,	the	ratio	of	the

circumference	of	a	circle	to	its	diameter.	You	can	actually	work	out	 ,
as	accurately	as	you	like,	by	adding	up	the	series	of	numbers:

This	gives	you	a	first	approximation	for	π	of	4	(4	×	1),	which	is	not
brilliant,	a	second	approximation	of	2.6666	… 	which	is	slightly
better,	and	also,	significantly,	lies	on	the	other	side	of	the	‘right’	answer,
a	third	approximation	of	3.46666	…	and	so	on.	The	approximations	get
better	and	better,	converging	on	the	true	value	of	π	from	either	side,	in
this	particular	case.	But	it	is	a	tedious	process	–	adding	up	the	first
million	terms	in	the	series	gives	a	value	for	π	of	3.1415937,	which	is
only	correct	to	the	first	five	decimal	places.	Nevertheless,	you	can	find	it
this	way	to	any	accuracy	(any	number	of	decimal	places)	you	wish,	if
you	have	the	patience.

But	many	infinite	series	do	not	converge	in	this	way.	Just	adding	up
all	the	positive	integers	(1	+	2	+	3	+	4	+…),	for	example,	produces	a
series	which	simply	gets	bigger	and	bigger,	tending	towards	infinity;
slightly	more	surprisingly,	at	first	sight,	adding	up	all	the	integer
fractions	 	also	tends	towards	infinity,	even	though	each
successive	term	in	the	series	is	smaller	than	the	one	before.	And	there
are	series	whose	sum	zig-zags	up	and	down	as	you	add	more	terms,	like

the	approximation	 	but	gets	further	and	further	away	from	some
particular	value	instead	of	converging	on	a	specific	value.	Take	the	series

1	-	2	+	3	-	4	+	5...



Successive	‘iterations’	in	this	case	give	you	the	values	1,	-1,	2,	-2,	3,	-3,
and	so	on.	The	more	terms	you	have	in	the	series,	the	bigger	the	swings
in	successive	‘approximations’	either	side	of	zero.	And	there	are	series
which	do	not	sum	in	any	obvious	regular	way	at	all.	All	these	series	that
do	not	converge	on	a	specific	finite	number	are	said	to	diverge,	and	as
well	as	using	just	ordinary	numbers	you	can	have	series	which	involve
variables,	known	as	power	series,	such	as	the	series

which	gives	you	scope,	if	you	have	the	mathematical	skills,	to	describe
things	like	orbits	in	this	way.	Such	infinite	series	have	formed	an
important	part	of	mathematics	since	the	time	of	Isaac	Newton,	who
developed	tech–	1niques	to	manipulate	them	in	problem-solving,	and
was	led	to	develop	the	calculus	through	this	work.

In	some	cases,	it	is	possible	to	prove	mathematically	that	a	series	of
this	kind	must	converge,	even	without	calculating	millions	of	terms	in
the	series.	In	some	cases,	it	is	possible	to	prove	that	a	series	diverges.	But
in	many	cases,	there	is	no	way	to	prove	whether	the	series	will	diverge
or	converge.	In	such	cases,	although	you	may	be	working	with	what
seems	to	be	a	well-behaved	convergent	series,	you	cannot	be	sure,	no
matter	how	many	terms	you	have	added	up	already,	that	the	next
iteration	will	not	produce	something	unexpected,	which	changes	the
answer	you	have	calculated	so	far	significantly	–	perhaps	drastically.

This	is	exactly	the	situation	that	astronomers	who	used	the
approximation	techniques	to	calculate	the	orbits	of	the	planets	in	the
Solar	System	were	in	in	the	middle	of	the	nineteenth	century.	The
approximations	seemed	to	work	and	gave	satisfactory	solutions.	As



approximations	seemed	to	work	and	gave	satisfactory	solutions.	As
Laplace	had	discovered,	they	described	well-behaved	orbits	around	the
Sun,	which	changed	only	in	regular	and	predictable	ways	when	the
complicating	effects	of	the	gravitational	influences	of	the	planets	on	each
other	were	taken	into	account.	But	nobody	had	been	able	to	prove	that
the	series	used	in	these	calculations	must	always	converge.	Astronomers
weren’t	too	worried	about	this,	as	long	as	the	approximations	seemed	to
work;	but	mathematicians	saw	it	as	a	challenge.	Nobody	really	thought
that	the	Solar	System	wasn’t	stable,	but	it	would	be	nice	to	have	proof
that	it	was.

In	the	1850s,	one	of	the	leading	experts	in	number	theory,	with	a
special	interest	in	the	behaviour	of	infinite	series,	was	Lejeune	Dirichlet,
a	German	mathematician	working	at	the	University	of	Göttingen.	In
1858,	Dirichlet	told	his	student,	Leopold	Kronecker,	about	a	new
technique	he	had	developed	for	solving	some	families	of	differential
equations	that	had	no	analytical	solutions.	He	also	hinted,	but	did	not
spell	out	the	details,	that	he	had	used	this	technique	to	prove	that	the
approximate	solutions	in	terms	of	infinite	series	for	the	equations
describing	the	orbits	of	the	planets	(the	equations	of	celestial	mechanics)
did	converge.	Unfortunately,	Dirichlet	died	in	May	1859,	at	the	age	of
fifty-four,	without	telling	anyone	the	details	of	this	claimed	proof.
Kronecker	told	the	rest	of	the	mathematical	world	about	Dirichlet’s
claim,	but	neither	Kronecker	nor	anyone	else	was	able	to	use	the	new
techniques	to	prove	that	the	relevant	series	really	did	converge.
Nevertheless,	Dirichlet	had	such	a	high	reputation	that	nobody	doubted
that	he	had	achieved	what	he	had	claimed	to	have	achieved	–	especially,
of	course,	since	everybody	wanted	to	believe	that	the	orbits	of	the
planets	really	were	stable.



planets	really	were	stable.

By	the	end	of	the	1880s,	though,	it	was	beginning	to	niggle	the
mathematicians	that	they	still	hadn’t	been	able	to	reproduce	what
Dirichlet	had	said	he	had	done.	Then	an	opportunity	came	for	something
of	a	concerted	attack	on	the	problem.	Mathematicians	at	the	University
of	Stockholm,	in	Sweden,	came	up	with	the	idea	of	contributing	to	the
celebrations	for	the	imminent	sixtieth	birthday	of	their	king,	Oscar	II,	by
organizing	an	international	competition,	with	a	major	cash	prize,	for	a
piece	of	original	mathematical	work	addressing	one	of	four	deep
questions	set	by	a	committee.	One	of	those	questions,	inspired	by
Dirichlet’s	claim	(and	by	the	failure	of	anybody	to	reconstruct	his	alleged
proof	even	after	the	best	part	of	thirty	years),	asked	for	a	proof	that	the
power	series	involved	in	the	calculations	of	planetary	orbits	must	always
converge.	In	plain	language,	the	question	could	be	summed	up	concisely:
Is	the	Solar	System	stable?	Among	the	entries	for	the	competition,	this
particular	challenge	was	taken	up	by	Henri	Poincaré,	who	in	the	process
invented	the	techniques	that	are	still	used	today	to	study	the	behaviour
of	dynamical	systems.

The	first	key	contribution,	the	idea	of	phase	space,	arose	from	the
work	of	the	Irish	mathematician	William	Hamilton	(1806–65),	earlier	in

the	nineteenth	century.1	Hamilton	found	a	way	to	reformulate	the
Newtonian	laws	of	physics	in	terms	of	two	properties	of	particles,	their
position	and	momentum	(which	is	equal	to	the	mass	of	a	particle
multiplied	by	its	velocity).	He	described	interactions	in	terms	of	changes
in	momentum	rather	than	in	terms	of	forces.	The	two	are	exactly

equivalent	physically,	2but	this	approach	provided	a	way	of	describing	a
complete	system	of	interacting	particles	in	terms	of	a	set	of	differential



equations	(the	Hamiltonian)	which	could	be	manipulated	in	accordance
with	certain	rules.	Position	and	momentum	are	the	key	variables	in	the
description,	appearing	on	a	mathematically	equal	footing;	but	each
described	by	its	own	set	of	differential	equations,	which	contain
information	about	how	the	relevant	quantity	changes	as	time	passes.	The
state	of	a	single	particle	at	any	moment	in	time	is	specified	by	its
position	and	momentum.

This	is	where	phase	space	comes	in.	On	a	two-dimensional	graph,	the
position	of	any	point	can	be	described	in	terms	of	two	numbers,	the	x
and	y	coordinates,	which	tell	us	how	far	the	point	is	along	the	graph
from	left	to	right,	and	how	far	up	the	graph	it	is	from	top	to	bottom.	In	a
similar	way,	the	position	of	a	particle	in	ordinary	three-dimensional
space	can	be	represented	by	three	numbers,	coordinates	indicating	its
distance	from	some	chosen	zero	point.	It	is	a	relatively	small	leap	of	the
imagination	to	take	this	idea	over	into	an	imaginary	space	which
represents	all	the	possible	momenta	a	particle	may	have.	Since
momentum	is	proportional	to	velocity,	and	velocity	is	a	three-
dimensional	property	(it	involves	direction,	not	just	speed),	a	single
point	in	this	imaginary	velocity	space	will	represent	the	components	of
the	velocity	of	a	particle	in	each	of	three	directions,	which	can	be	chosen
to	be	at	right	angles	to	one	another.	The	numbers	can	be	read	off	along
the	x,	y	and	z	axes,	and	the	three	components	can	be	combined	to
indicate	the	overall	momentum	of	the	particle.	Now	comes	the	step	that
only	a	mathematician	would	take.	Why	not	combine	these	two	sets	of
information,	three	dimensions	representing	space	and	three	dimensions
describing	motion?	The	result	is	an	imaginary	six-dimensional	space,	in
which	a	single	point	describes	both	the	position	and	the	momentum	of	a



particle	at	a	particular	moment.	This	is	the	phase	space	of	a	single
particle.

Fortunately,	you	don’t	have	to	be	able	to	visualize	such	a	phase
space.	The	equations	which	describe	what	is	going	on	can	be	extended
from	two,	to	three,	to	many	dimensions	in	a	relatively	straightforward
way.	As	long	as	you	can	manipulate	the	equations,	you	don’t	have	to
picture	what	is	happening,	except	(if	it	helps)	in	terms	of	the	three-
dimensional	equivalent,	a	kind	of	cross-section	through	six-dimensional
phase	space.	This	is	particularly	important	because	we	can’t	stop	here.	It
takes	six	dimensions	to	describe	the	state	of	a	single	particle.	If	there	are
two	particles	interacting	in	an	otherwise	empty	box,	you	need	a	phase
space	with	twelve	dimensions	to	describe	the	system	in	this	way,	and	so
on.	The	state	of	a	box	of	gas	at	room	temperature	and	pressure	can	also
be	represented	by	a	single	point	in	a	phase	space,	but	now	the	phase
space	involved	has	six	times	as	many	dimensions	as	the	number	of
particles	in	the	box	–	itself	a	number	whose	enormous	size	we	have
already	encountered.	Of	course,	the	vast	number	of	differential
equations	involved	in	describing	such	a	system	cannot	be	solved	in
practical	terms,	even	if	the	mathematics	tells	us	that	they	are	solvable	in
principle.	But	the	statistics	in	classical	statistical	mechanics	involve
analysing	the	probabilities	associated	with	the	distribution	of	points	in
phase	space	describing	a	system	like	a	box	of	gas	in	these	terms.	There
are	many	more	points	(quantifiably	more)	in	phase	space	corresponding
to	an	even	distribution	of	particles	throughout	the	box,	for	example,
than	there	are	points	representing	all	the	particles	at	one	end	of	the	box,
and	there	are	far	more	points	corresponding	to	an	even	distribution	of
momentum	among	the	particles	than	there	are	points	representing	a



division	of	momenta	with	half	the	particles	moving	very	fast	and	half
moving	very	slowly.	This	corresponds	to	there	being	a	much	larger
volume	of	phase	space	to	hold	all	the	relevant	points	in	the	first	case,
and	a	much	smaller	volume	of	phase	space	to	contain	the	points	which
represent	the	second	case.

Phase	space	can	be	thought	of	as	like	a	landscape,	with	rolling
valleys,	deep	potholes,	hills	and	mountains.	The	Hamiltonian	allows
mathematicians	to	analyse	how	the	overall	system	changes	as	time
passes,	in	a	general	way,	without	solving	the	myriad	individual
differential	equations.	If	we	imagine	pouring	water	over	our	phase	space
landscape,	for	example,	it	will	flow	along	the	valleys,	taking	longer	to
flow	through	large	valleys	than	through	small	indentations	in	the
landscape;	it	will	congregate	in	the	deep	potholes,	and	run	off	from	the
mountain	tops.	The	Hamiltonian	tells	us	how	real	systems	move
‘through’	phase	space,	and	indicates	regions	they	will	be	attracted	to	–
the	deep	valleys	and	potholes.	We	can	even	extend	the	analogy	to
include	the	equivalent	of	evaporation	and	rainfall,	corresponding	to
relatively	rare	paths	which	take	particles	out	of	the	‘river’	and	on	to	the
‘mountain	tops’,	from	where	they	inevitably	flow	back	down.	The
motion	of	a	single	particle	through	phase	space	(its	trajectory)	represents
the	way	the	whole	system	changes	with	time,	and	the	amount	of	time
the	particle	spends	in	each	part	of	phase	space	is	proportional	to	the
volume	of	that	region	of	phase	space.	You	can’t	say	exactly	where	the
single	particle	will	go,	any	more	than	you	can	predict	the	exact
trajectory	of	a	single	molecule	of	water	in	a	swollen	river;	but	you	can
say	that	there	is	an	overwhelming	likelihood	that	it	will	follow	a	certain
kind	of	trajectory	through	phase	space,	just	as	our	water	molecule	has



little	choice	but	to	stay	within	the	banks	of	the	river.	There	is	only	a
much	smaller	probability	that	it	will	follow	one	of	the	rare,	thinly
populated	trajectories	up	to	the	mountain	top	and	back	down	again.

To	get	back	to	a	very	simple	example,	for	a	perfect,	frictionless
pendulum	swinging	to	and	fro	there	is	only	one	relevant	dimension	of
real	space	and	one	dimension	of	velocity	space,	so	the	phase	space	is
two-dimensional	and	can	be	drawn	on	a	flat	piece	of	paper.	Let’s	choose
to	represent	position	across	the	page,	and	velocity	up	and	down	the
page,	with	up	corresponding	to	motion	to	the	right	and	down
corresponding	to	motion	to	the	left.	As	the	bob	of	the	pendulum	moves
from	left	to	right	and	back	again,	its	velocity	starts	at	zero	at	one	end	of
the	swing,	rises	to	a	maximum	in	one	direction	at	the	middle	of	the
swing,	drops	to	zero	at	the	other	end,	then	repeats	the	process	in	reverse.
Combine	this	with	the	changing	position	in	real	space,	and	it	traces	a
circle	in	phase	space.	If	you	allow	for	friction,	the	swinging	pendulum
will	gradually	slow	down	and	stop,	tracing	out	a	spiral	in	phase	space,
with	the	point	at	the	centre	of	the	spiral	being	an	attractor	for	this
particular	system.

This	idea	of	thinking	about	phase	space	in	terms	of	mountains,
valleys	and	so	on	is	a	very	simple	version	of	topology,	a	subject
pioneered	by	Poincaré	and	which	he	applied,	in	the	context	of	phase
space,	to	the	problem	of	proving	that	the	Solar	System	is	stable.	In
essence,	he	turned	a	problem	involving	mechanics	and	dynamics	into	a
problem	involving	geometry.	Remember	that	a	single	point	in	phase
space	corresponds	to	the	entire	state	of	a	system	–	in	the	case	of	the	gas
in	a	box,	that	point	(or	the	Hamiltonian	corresponding	to	that	point)
uniquely	represents	the	position	and	momentum	of	each	and	every



particle	of	gas	in	the	box.	A	trajectory	through	phase	space	describes
how	the	state	changes	as	time	passes.	But	if	that	trajectory	ever	passes
through	a	point	that	it	has	passed	through	before,	that	means	the	whole
system	has	exactly	returned	to	an	earlier	state.	In	that	case,	according	to
the	laws	of	Newtonian	mechanics,	it	must	proceed	from	that	state	in
exactly	the	same	way	that	it	did	before,	retracing	its	trajectory	through
phase	space.	For	boxes	of	gas,	this	is	at	the	heart	of	Poincaré’s	idea	of
cycles	and	recurrence;	for	orbits,	it	means	that	if	a	trajectory	through	a
phase	space	representing	the	possible	states	of,	say,	three	bodies	returns
to	the	same	point	in	phase	space	that	it	has	been	to	before,	then	the
orbits	themselves,	no	matter	how	complicated	they	may	look,	must
repeat	periodically	and	the	bodies	involved	will	not	suddenly	fly	apart
from	one	another	or	crash	into	one	another.	You	might	also	guess	that	if
the	trajectory	through	phase	space	returns	very	nearly	to	a	point	it	has
passed	through	before,	then	the	subsequent	behaviour	of	the	system	will
be	very	nearly	the	same	as	it	was	before.	But,	as	we	shall	see,	you	should
take	nothing	for	granted.

In	his	competition	entry,	Poincaré	didn’t	even	attempt	to	describe
topologically	the	behaviour	of	the	entire	Solar	System,	but	concentrated
on	a	geometrical	representation	of	the	phase	space	for	the	orbits
associated	with	a	very	simple	case,	known	as	the	‘restricted’	three-body
problem.	In	a	universe	containing	just	two	gravitating	bodies	there	is,	as
we	have	seen,	no	difficulty	in	describing	their	orbits.	As	Newton	showed,
they	move	around	one	another	in	a	completely	regular	and	periodic	way,
which	Poincaré	and	his	successors	could	describe	in	terms	of	a	closed
loop	in	phase	space.	Add	another	body,	though,	and	as	we	have	seen,	the
motion	becomes	too	complicated	to	calculate	analytically.	The	restricted



three-body	problem	tries	to	get	around	this	by	imagining	two	bodies
more	or	less	the	same	size,	and	a	third	body	which	is	so	much	smaller
than	the	other	two	that,	for	the	purposes	of	the	calculations,	its
gravitational	effect	on	the	larger	bodies	can	be	ignored,	even	though
they	have	a	powerful	effect	on	the	small	body	(which	is	sometimes
called	a	‘dust	particle’).	The	situation	still	cannot	be	solved	analytically,
but	all	you	try	to	do	then	is	calculate	the	orbit	of	the	dust	particle,	by
summing	the	appropriate	series,	within	the	framework	of	the	changing
positions	of	the	other	two	bodies.	This	is	an	impossible	situation,	since
the	dust	particle	must	always	have	some	gravitational	influence	on	its
partners,	but	the	hope	of	mathematicians	such	as	Poincaré	was	that	it
might	give	a	reasonable	approximation	to	what	is	going	on	in	the	Solar
System	if	we	think	about	the	interactions	between,	say,	the	Sun,	Jupiter

and	the	Earth,	or	the	Sun,	Earth	and	the	Moon.3

One	of	Poincaré’s	great	simplifying	assumptions	was	to	look	at	only	a
small	part	of	the	appropriate	phase	space	–	in	effect,	a	cross-section
through	phase	space,	representing	a	surface	through	which	the	trajectory
being	investigated	had	to	pass.	This	is	now	known	as	a	Poincaré	section.
If	a	trajectory	through	phase	space	starts	at	one	point	on	a	Poincaré
section	and	returns	to	that	point,	then	no	matter	how	complicated	the
behaviour	of	the	system	might	have	been	in	between	these	two
intersections	with	the	Poincaré	section,	you	know	that	it	is	exactly
periodic.	In	order	to	lead	the	judges	relatively	gently	up	to	his	new
ideas,	Poincaré	started	out	by	tackling	the	problem	in	the	conventional
way,	which	meant	that	he	still	had	to	solve	differential	equations	to	try
to	obtain	the	longed-for	proof	that	orbits	in	the	Solar	System	(or,	at
least,	the	orbits	of	a	dust	particle	in	the	restricted	three-body	problem)



were	periodic,	and	since	the	equations	could	not	be	solved	analytically
this	meant	adding	up	series,	and	he	didn’t	quite	finish	the	job.	He	found
the	appropriate	equations,	and	he	derived	the	appropriate	infinite	series,
but	he	didn’t	actually	prove	that	the	series	must	converge,	only	that
there	were	appropriate	solutions	that	could	converge.	Then,	he	went	on
to	use	his	new	topological	approach	to	show	(as	he	thought)	that	these
must	be	the	right	solutions,	since	the	appropriate	trajectories	through
phase	space	did	return	to	cross	the	Poincaré	section	at	the	same	point
they	started	from.

It	took	Poincaré	more	than	200	pages	to	set	all	this	out,	and	much	of
it	was	new	to	the	judges.	But	it	gave	the	answer	they	wanted,	it	was
obviously	very	clever,	and	they	had	to	complete	the	judging	in	time	for
the	King’s	birthday	on	21	January	1889.	Poincaré	got	the	prize.	But
when	the	paper	was	published,	and	other	mathematicians	had	time	to
study	it	at	length,	they	found	that	Poincaré	had	made	a	mistake.	His
‘proof’	didn’t	hold	up.	After	a	burst	of	intense	work	in	response	to	the
criticisms	made	by	his	colleagues,	Poincaré	corrected	the	flaws	in	his
reasoning	and	published	a	revised	paper,	now	regarded	as	one	of	the	all-
time	classics	in	mathematics,	in	1890.	To	his	own	surprise,	when	he
corrected	his	mistakes	he	found	that	his	new	approach	proved	that,	in
the	old	language,	even	for	the	orbit	of	the	dust	particle	in	the	restricted
three-body	problem,	the	appropriate	series	typically	diverge	–	instability
is	normal,	and	permanently	stable	orbits	are	the	exception.	In	terms	of
his	new	geometrical	approach,	he	found	that	although	there	are	periodic
orbits	for	which	the	trajectory	in	phase	space	returns	repeatedly	to	a
precise	point	on	the	Poincaré	section,	if	the	trajectory	cuts	the	Poincaré
section	even	a	tiny	distance	away	from	that	point,	the	system	can	then



follow	a	completely	different	pattern	of	behaviour,	with	trajectories
taking	very	different	routes	through	phase	space	and	repeatedly	crossing
the	Poincaré	section	without	ever	quite	hitting	the	same	point	twice.
There	could	be	infinitely	many	crossing	points	on	the	Poincaré	section,
allowing	the	trajectory	through	phase	space	to	wander	in	an	infinitely

complicated	and	varied	way	without	ever	returning	to	its	starting	point.4

The	good	news	is	that,	at	least	in	the	case	of	the	restricted	three-body
problem,	and	more	generally	for	the	planets	of	the	Solar	System,	orbits
can	in	principle	be	calculated	as	accurately	as	you	like	by	going	through
the	laborious	approximation	techniques	and	adding	up	the	appropriate
series	for	a	large	enough	number	of	terms,	even	though	they	are	not,
strictly	speaking,	perfectly	periodic.	And,	as	we	shall	see,	these
calculations	show	that	there	are	relatively	simple	situations	in	which
planets	can	follow	essentially	the	same	orbits	for	very	long	intervals
compared	with	any	human	timescale,	even	though	they	are	not	strictly
periodic	on	timescales	that	are	long	compared	with,	say,	the	age	of	the
Sun.	But	the	key	thing	to	take	away	from	Poincaré’s	work	is	the
realization	that	under	some	circumstances	(not	all	circumstances,	but
not	necessarily	rare	circumstances,	either)	systems	that	start	out	from
very	nearly	the	same	state	can	very	rapidly	evolve	in	entirely	different
ways.

There	are	two	helpful	ways	of	getting	a	feel	for	this.	The	first	goes
back	to	the	analogy	of	phase	space	as	a	landscape	through	which	water
is	flowing.	The	trajectory	of	a	single	molecule	of	water	through	phase
space	represents	the	changing	state	of	an	entire	system,	as	simple	as	the
restricted	three-body	problem	or	as	complicated	as	the	entire	Universe.
Imagine	that	there	is	a	broad	river	flowing	through	the	landscape,
representing	a	region	in	which	it	is	highly	likely	that	the	Hamiltonian



representing	a	region	in	which	it	is	highly	likely	that	the	Hamiltonian
corresponding	to	the	system	will	be	found.	At	some	point,	the	river	splits
and	diverges	into	a	complicated	network	of	channels,	forming	a	delta
like	the	mouth	of	the	Ganges.	A	single	molecule	moving	with	the	flow	of
the	river	may	move	to	the	left,	into	one	branch	of	the	forking	channels,
while	its	neighbouring	molecule	moves	to	the	right,	into	another	branch
of	the	network.	Thereafter,	they	follow	quite	different	paths.	In	other
words,	two	trajectories	through	phase	space	that	have	run	for	a	long	way
beside	each	other,	corresponding	to	very	nearly	identical	states	of	the
system,	can	diverge	into	very	different	states.	In	a	similar	way,	imagine	a
drop	of	water	falling	on	to	a	high,	knife-edge	mountain	range.	If	it	falls
one	side	of	the	ridge	it	will	flow	away	in	one	direction,	to	a	deep	ocean
representing	a	strong	attractor	for	the	system;	if	it	falls	the	other	side	of
the	ridge,	it	will	flow	in	the	opposite	direction,	into	another	deep	ocean,
an	equally	powerful	attractor	for	the	system.	But	the	two	trajectories
leading	to	such	different	final	states	may	start	out	infinitesimally	close
together.

An	example	relating	to	the	everyday	world	also	helps.	In	our
everyday	lives,	most	changes	occur	in	a	linear	fashion.	It	takes	twice	as
much	force	to	lift	a	2-kilo	bag	of	sugar	as	it	does	to	lift	a	1-kilo	bag	of
sugar,	and	so	on.	If	you	take	two	steps	down	the	road,	you	travel	twice
as	far	from	where	you	started	than	you	would	if	you	took	one	step.	But
suppose	walking	was	a	non-linear	process,	so	that,	after	you	had	taken
the	all-important	first	step,	each	step	you	took	carried	you	twice	as	far	as
the	one	before.	Let’s	say	the	first	step	takes	you	a	metre	down	the	road.
Then	the	second	step	would	cover	two	metres,	the	third	four	metres,	and
so	on.	With	linear	walking,	11	steps	would	take	you	just	11	metres	down



the	road.	But	with	this	kind	of	non-linear	walking,	the	11th	step	alone
would	take	you	a	distance	of	1,024	metres,	which	itself	would	be	one
metre	more	than	all	the	previous	10	steps	put	together.	In	round	terms,
11	steps	would	take	you	not	11	metres	but	2	kilo	metres	down	the	road.
Non-linear	things	move	very	swiftly	away	from	their	starting	point,	and
if	two	trajectories	start	out	in	non-linear	fashion	in	slightly	different
directions	through	phase	space,	they	diverge	from	one	another	no	less
rapidly.	Poincaré	discovered	that	many	systems	in	the	real	world	are
very	sensitive	to	their	initial	conditions	(like	the	raindrop	falling	on	the
mountain	ridge),	and	that	they	move	away	from	those	starting
conditions	in	non-linear	fashion.

The	important	point	is	that	this	limits	our	ability	to	predict	the
behaviour	of	such	systems.	With	a	linear	system,	if	I	make	a	small
mistake	in	measuring,	or	estimating,	some	initial	property	of	the	system,
this	will	carry	through	my	calculations	and	lead	to	a	small	error	at	the
end.	But	with	a	non-linear	system,	a	small	error	at	the	beginning	of	the
calculation	can	lead	to	a	very	large	error	at	the	end	of	the	calculation.	A
linear	system	is	more	or	less	equal	to	the	sum	of	its	parts;	a	non-linear
system	may	be	either	much	more,	or	much	less,	than	the	sum	of	its	parts.
Poincaré	realized	that	this	means	that	in	some	circumstances	we	cannot
calculate	just	how	a	system	will	change	as	time	passes,	because	the
information	we	have	about	its	starting	conditions	is	not	accurate	enough.
In	his	Science	et	Méthode	he	wrote,	in	1908:
A	very	small	cause	that	escapes	our	notice	determines	a	considerable	effect	that	we	cannot	fail	to	see,	and	then	we	say

that	the	effect	is	due	to	chance.	If	we	knew	exactly	the	laws	of	nature	and	the	situation	of	the	universe	at	the	initial

moment,	we	could	predict	exactly	the	situation	of	that	same	universe	at	a	succeeding	moment.	But	even	if	it	were	the

case	that	the	natural	laws	had	no	longer	any	secret	for	us,	we	could	still	only	know	the	initial	situation	approximately.	If

that	enabled	us	to	predict	the	succeeding	situation	with	the	same	approximation,	that	is	all	we	require,	and	we	should	say

that	the	phenomenon	had	been	predicted,	that	it	is	governed	by	laws.	But	it	is	not	always	so;	it	may	happen	that	small



differences	in	the	initial	conditions	produce	very	great	ones	in	the	final	phenomena.	A	small	error	in	the	former	will

produce	an	enormous	error	in	the	latter.	Prediction	becomes	impossible,	and	we	have	the	fortuitous	phenomenon.

In	other	words,	although	Laplace	was	right	in	principle,	his
deterministic	universe	could	never	be	predicted	in	practice,	either
forwards	or	backwards	in	time.

In	the	same	volume,	Poincaré	elaborated	on	this	theme	using	the
specific	example	of	weather	forecasting:

Figure	2.1	The	three-body	problem.	If	a	small	‘satellite’	is	orbiting	two	larger	‘planets’,	even	a	tiny
change	in	the	starting	conditions	of	the	satellite’s	trajectory	soon	leads	to	a	large	change	in	its	orbit.
Because	we	can	never	know	the	starting	conditions	precisely,	this	means	the	orbit	is	unpredictable.	This
view	shows	two	such	trajectories,	in	a	rotating	frame	of	reference	so	that	the	two	planets	apper
stationary.

Why	have	meteorologists	such	difficulty	in	predicting	the	weather	with	any	certainty?	Why	is	it	that	showers	and	even

storms	seem	to	come	by	chance,	so	that	many	people	think	it	quite	natural	to	pray	for	rain	or	fine	weather,	though	they

would	consider	it	ridiculous	to	ask	for	an	eclipse	by	prayer?	We	see	that	great	disturbances	are	generally	produced	in

regions	where	the	atmosphere	is	in	unstable	equilibrium.5	The	meteorologists	see	very	well	that	the	equilibrium	is

unstable,	that	a	cyclone	will	be	formed	somewhere,	but	exactly	where	they	are	not	in	a	position	to	say;	a	tenth	of	a

degree	more	or	less	at	any	given	point,	and	the	cyclone	will	burst	here	and	not	there,	and	extend	its	ravages	over	districts

it	would	otherwise	have	spared.	If	they	had	been	aware	of	this	tenth	of	a	degree,	they	could	have	known	of	it	beforehand,

but	the	observations	were	neither	sufficiently	comprehensive	nor	sufficiently	precise,	and	that	is	why	it	all	seems	due	to

the	intervention	of	chance.

This	example	can	be	seen,	with	hindsight,	to	be	particularly



This	example	can	be	seen,	with	hindsight,	to	be	particularly
prescient.	Poincaré	was	far	ahead	of	his	time	with	his	attempts	to
describe	how	orderly	rules	of	physics	can	give	rise	to	seemingly	chaotic
behaviour	in	the	everyday	world,	and	it	would	be	many	decades	before
these	ideas	were	revived	and	became	part	of	mainstream	science.	When
that	revival	did	take	place,	though,	it	came	about,	in	no	small	measure,
through	the	efforts	of	meteorologists	to	improve	their	weather	forecasts,
and	to	understand	why	those	forecasts	often	failed.	The	key	question	is
just	how	comprehensive	and	precise	the	initial	observations	have	to	be;
and	a	good	place	to	start	on	the	problem	is	through	the	work	of	the
English	pioneer	Lewis	Fry	Richardson,	who	was	also	a	man	ahead	of	his
time,	and	who	worked	out	how	to	do	scientific	weather-forecasting	in
the	second	decade	of	the	twentieth	century,	long	before	the	tools	needed
for	the	job	(in	particular,	high-speed	electronic	computers)	were
available.

Richardson,	who	was	born	in	1881	and	died	in	1953,	had	wide-

ranging	interests,	and	was	by	no	means	a	stereotypical	meteorologist.6	A
Quaker	and	the	son	of	a	farmer,	Richardson	was	superintendent	of	the
meteorological	observatory	at	Eskdalemuir,	in	Scotland,	at	the	outbreak
of	the	First	World	War.	Because	of	his	religious	beliefs,	he	did	not	take
part	in	the	fighting,	but	volunteered	as	an	ambulance	driver,	serving
close	to	the	front	line.	There,	in	his	spare	time,	he	spent	hours	working
through	tedious	arithmetical	calculations	in	an	attempt	to	produce	the
first	numerical	weather	‘forecast’	–	not	really	a	forecast	in	the	usual
sense	of	the	term	since	he	had	brought	with	him	a	stack	of	genuine
weather	data	for	one	particular	hour	on	one	particular	day,	and	was
trying	to	use	that	information	to	calculate	the	broad	outlines	of	the



weather	patterns	over	Europe	for	a	time	six	hours	later	than	the	time	for
which	these	input	data	applied.	Even	if	it	worked,	it	would	take	months
to	make	a	‘forecast’	for	six	hours	ahead;	but	what	mattered	to
Richardson	in	the	second	decade	of	the	twentieth	century	was	the
possibility	of	proving	that	the	mathematical	approximations	and	the
laws	of	physics	could	be	used	in	this	way.

The	inspiration	for	this	project	came	from	the	work	of	the	Norwegian
Vilhelm	Bjerknes,	nineteen	years	older	than	Richardson,	who	had
suggested,	a	decade	earlier,	that	such	a	technique	for	predicting	the
weather	might	be	possible	in	principle.	He	was	the	first	to	propose	that
the	equations	that	described	the	weather	were	known	well	enough	for
forecasting	to	be	possible,	if	the	initial	conditions	for	starting	the
calculation	were	known	accurately	enough.	The	idea	behind	this
approach	to	weather	prediction,	which	is	at	the	heart	of	modern
forecasting,	is	to	measure	the	important	properties	of	the	atmosphere,
such	as	temperature	and	pressure,	at	a	grid	of	points	over	the	surface	of
the	Earth	and	extending	upwards	into	the	air.	The	closer	the	points	are
together,	the	more	accurate	is	the	mathematical	model	of	the	state	of	the
atmosphere	at	that	time.	Then	you	apply	the	laws	of	physics	to	work	out
how	the	conditions	at	each	grid	point	will	change	under	the	influence	of
its	neighbours	(with	heat	flowing	from	hotter	points	to	cooler	ones,	wind
blowing	from	high	pressure	regions	to	low	pressure	regions,	convection,

and	so	on).7	The	similarity	to	the	kind	of	techniques	needed	to	solve	the
puzzle	of	the	orbits	of	the	planets	is	obvious,	and	common	sense	tells	us
that	you	have	much	more	hope	of	success	if	you	can	use	a	finer	grid,
with	points	closer	together.	Conditions	at	places	in	between	the	grid
points	are	calculated	simply	by	interpolation	–	taking	an	appropriate



average	of	the	properties	of	the	surrounding	grid	points.	The	expectation
was	that	if	the	technique	worked	at	all,	it	could	be	made	as	accurate	as
you	liked	(in	principle)	by	using	more	and	more	points	from	an	ever
more	finely	meshed	grid.	It	happened	that	Richardson‘s	forecast	was
hopelessly	inaccurate,	but	he	was	not	at	all	surprised	since	he	was	forced
to	use	a	very	coarse	grid	of	data	points	(both	because	of	the	limited	data
available	and	because	of	the	time	required	for	the	calculations),	which
could	not	realistically	be	expected	to	represent	all	the	subtleties	of	the
weather	over	Europe.	What	mattered	at	the	time	was	that	he	had	used
the	technique	to	calculate	how	weather	might	change,	even	if	the	results
of	his	calculations	did	not	match	the	real	world.

Richardson	was	sufficiently	enthusiastic	about	the	technique	to	start
work	on	a	book,	Weather	Prediction	by	Numerical	Process,	while	still
serving	on	the	Western	Front.	In	the	confusion	of	a	rapid	move	caused
by	the	fighting,	the	only	copy	of	his	handwritten	manuscript	was	lost	in
1917	–	but	it	turned	up,	a	few	months	later,	under	a	heap	of	coal.
Nobody	knows	how	it	got	there,	but	with	the	manuscript	restored	to	him
Richardson	was	able	to	complete	the	book,	which	was	published	in	1922
and	contains	his	most	famous	vision	of	the	future	of	forecasting.	Well
aware	that	there	is	no	practical	point	(no	matter	how	rewarding	it	may
be	for	mathematicians)	in	making	a	forecast	for	six	hours	ahead	if	it
takes	months	(or	even	just	seven	hours)	to	do	the	calculations,
Richardson	asked	his	readers	to	envisage	a	‘Forecasting	Factory’	in
which	64,000	human	‘computers‘,	each	equipped	with	a	mechanical
calculator	(a	kind	of	glorified	adding	machine,	the	forerunner	of	the
electronic	pocket	calculator),	would	each	be	working	on	one	aspect	of

the	problem,8	seated	in	an	amphitheatre	like	a	football	stadium,	and	all



under	the	direction	of	a	kind	of	mathematical	conductor	on	a	stage	at
the	centre	of	operations,	communicating	with	them	by	flashing	lights,	or
messages	sent	along	pneumatic	tubes.	It	was,	of	course,	scientific	fantasy
–	it	would	never	be	possible	to	correlate	the	actions	of	so	many	people	in
the	way	required.	Richardson	himself	wrote:
Perhaps	some	day	in	the	dim	future	it	will	be	possible	to	advance	the	computations	faster	than	the	weather	advances	at	a

cost	less	than	the	saving	to	mankind	due	to	the	information	gained.	But	that	is	a	dream.

It	was,	though,	a	dream	he	came	to	see	almost	realized.	Within	three
decades,	before	Richardson	himself	had	died,	the	invention	of	the
electronic	computer	opened	up	the	possibility	of	doing	essentially	the
same	job	with	machines	–	with	a	single	machine	replacing	all	of
Richardson‘s	64,000	human	computers,	and	(eventually)	many	more
besides.	The	first	successful	numerical	weather	forecast	was	made	by
such	a	machine	in	1950,	although	at	that	time	it	still	took	longer	for	the
machine	to	come	up	with	the	prediction	than	it	did	for	the	real
atmosphere	to	evolve.

Richardson	himself,	no	doubt	aware	that	he	had	taken	numerical
forecasting	as	far	as	it	could	go	in	the	1920s,	moved	on	to	other	things,
running	the	physics	department	at	Westminster	Training	College	in
London	from	1920	to	1929,	and	then	being	Principal	of	Paisley
Technical	College	in	Glasgow	until	he	retired	in	1940.	Along	the	way	he
studied	psychology,	and	both	before	and	after	his	retirement	he	wrote
books	about	the	psychology	and	causes	of	armed	conflict.	In	view	of	this,
and	his	Quaker	beliefs,	it	is	somewhat	ironic	that	the	huge	progress	in
computing	techniques,	which	saw	numerical	weather-forecasting
becoming	a	reality	in	his	lifetime,	was	stimulated	by	the	work	of	the
codebreakers	in	the	Second	World	War.	But	although	at	the	beginning	of



the	1950s	it	seemed	that	Richardson‘s	dream	was	coming	true,	and	that
all	you	needed	for	better	forecasts	were	faster	computers	and	more	finely
meshed	grids	of	observations,	ten	years	later	one	man	stumbled	upon	the
evidence	that	pulled	the	rug	from	under	this	assumption	and	showed
that	even	Poincaré	had	been	wildly	optimistic	with	his	suggestion	that
knowing	the	state	of	the	atmosphere	to	an	accuracy	of	a	tenth	of	a
degree	might	explain	why	a	hurricane	happens	here	rather	than	there.

In	1959	Edward	Lorenz	was	a	thirty-two-year-old	mathematical
meteorologist	working	at	Massachusetts	Institute	of	Technology	(MIT).
Even	without	being	able	to	write	down	a	complete	set	of	equations	to
describe	the	state	of	the	atmosphere	at	any	time,	he	had	the	idea	that	in
principle	such	equations	could	describe	any	state	of	the	atmosphere,	no
matter	how	unrealistic	or	implausible,	as	starting	conditions,	but	that	if
a	simulation	were	set	up,	corresponding	to	such	a	state,	natural
processes	would	then	drive	the	model	atmosphere	into	one	of	a
relatively	small	number	of	stable	states	–	what	we	would	now	call
attractors,	although	this	was	not	the	language	used	by	meteorologists	in
the	1950s.	Pioneers	of	mathematical	weather-forecasting	had	used	linear
techniques,	for	the	usual	reasons	that	they	had	to	start	somewhere	and
linear	equations	are	easier	to	work	with	than	non-linear	equations.
Lorenz	went	further	by	developing	a	computer	model	of	a	very
simplified	version	of	the	atmosphere	(physicists	sometimes	call	such
simplifications	‘toy’	models)	based	on	a	set	of	twelve	non-linear
equations.	The	model	had	to	be	very	simple	because	the	computers
available	in	1959	were	very	simple	–	Lorenz	used	a	machine	the	size	of	a
large	desk,	which	had	a	memory	of	just	4k	32-bit	words,	rather	less
powerful	than	the	chip	inside	the	average	digital	watch	or	washing



machine	today.	He	was	able	to	show	that	linear	forecasting	techniques

were	‘far	from	perfect’9	and	went	on	to	study	the	behaviour	of	his
simulations	in	their	own	right.

Just	as	the	computer	power	available	at	the	time	was	limited,	so
were	the	output	devices	–	no	colour	laser	printers	or	flat-screen
monitors.	The	output	from	Lorenz‘s	computer	was	simply	a	printed	list
of	numbers,	which	he	programmed	the	computer	to	round	off	to	three
decimal	places	in	order	to	fit	a	complete	set	of	twelve	numbers	on	one
line	of	output	paper.	The	model	moved	forward	in	steps	of	six	simulated
hours,	and	simulated	a	day	of	weather	in	one	minute.	Getting	really
sophisticated,	Lorenz	then	programmed	the	machine	to	print	the	details
for	just	one	or	two	variables	on	each	line,	with	the	distance	of	the
symbol	‘up	the	page’	representing	the	value	of	the	variable;	he	could
then	draw	a	line	by	hand	through	these	points	to	display	the	changing
value	of	the	variable	(the	wind	direction,	for	example)	as	a	graph.	It	was
at	this	point	that	serendipity	struck.

Lorenz	decided	that	he	wanted	to	take	a	second	look	at	part	of	a
simulation	he	had	already	run,	extending	it	further	into	the	future,	and
instead	of	starting	from	the	beginning	and	waiting	until	the	computer
caught	up	to	the	interval	he	was	interested	in,	he	typed	in	as	the	starting
parameters	the	set	of	numbers	from	part-way	through	the	old	run,
reading	them	off	the	paper,	and	then	went	off	to	have	a	cup	of	coffee
while	the	machine	chugged	away.	After	an	hour	or	so,	during	which
time	the	machine	had	simulated	two	months	of	toy	weather,	he	came
back	to	check	progress,	and	found	that	the	numbers	being	printed	bore
no	relation	to	the	numbers	for	the	corresponding	‘days’	of	the	earlier
run.	At	first,	he	thought	the	computer	was	faulty.	But	when	he	compared
the	two	printouts	closely,	he	found	that	the	second	run	started	out	like



the	two	printouts	closely,	he	found	that	the	second	run	started	out	like
the	corresponding	section	of	the	first	one	but	deviated	more	and	more
from	it,	with	the	errors	doubling	in	size	for	every	four	days	of	the
simulation	–	non-linear	growth.

Lorenz	soon	realized	what	had	happened.	The	numbers	he	had	typed
in	were	the	three-decimal-place	numbers	from	the	printout;	but	inside
the	computer	the	numbers	were	calculated	to	six	decimal	places.	Where
Lorenz	had	typed	0.506,	for	example,	the	number	from	the	first	run	had
actually	been	0.506127.	The	model	was	so	sensitive	to	the	initial
conditions	that	the	difference,	one	quarter	of	one	tenth	of	1	per	cent,
made	the	two	runs	diverge	completely	from	one	another	after	a	short
time.	If	the	real	atmosphere	was	as	sensitive	as	this	to	its	initial
conditions,	then	there	was	no	hope	of	using	numerical	forecasting
techniques	to	predict	the	weather	more	than	a	few	days	ahead.	Lorenz
announced	his	discovery	in	a	fairly	low-key	way	at	a	scientific	meeting
held	in	Tokyo	in	1960,	and	went	on	to	develop	these	ideas	in	the
following	years,	but	the	full	significance	of	his	work	was	not
appreciated,	as	we	shall	see,	until	much	later.	In	terms	of	weather-
forecasting,	Lorenz	was	able	to	show	that	the	real	atmosphere	can
indeed	be	very	sensitive	to	initial	conditions.	He	used	a	simple
mathematical	(numerical)	model	of	convection,	which	only	hints	at	the
complexity	of	the	real	weather,	but	which	shows	a	key	feature	of
sensitivity	to	small	changes.	You	can	picture	this	in	terms	of	our	model
of	phase	space	as	a	landscape	flooded	with	water	–	imagine	two	deep
pools	in	phase	space,	representing	equally	powerful	attractors,	separated
by	a	sand	bar	with	a	very	shallow	layer	of	water	over	it,	linking	the	two
pools.	Typical	trajectories	in	phase	space	will	circle	round	and	round	one



or	other	of	the	pools,	but	some	rare	trajectories	cross	over	the	sand	bar
and	into	the	other	pool,	where	they	circle	round	and	round	before
crossing	back	into	the	first	pool.	The	nub	of	Lorenz‘s	discovery	is	that
without	knowing	the	precise	location	of	a	point	in	phase	space,	it	is
impossible	to	predict	exactly	when	the	trajectory	passing	through	that
point	will	cross	over	to	the	other	side,	so	the	flips	from	one	state	to	the
other	seem	to	occur	at	random.	Or,	from	a	slightly	different	perspective,
the	trajectories	that	wander	over	the	sand	bar	are	very	susceptible	to
tiny	perturbations,	and	a	small	nudge	from	outside	may	be	all	that	it
takes	to	shift	a	system	from	a	trajectory	heading	back	into	one	pool	on	to
a	trajectory	heading	across	into	the	other	pool.	It	is	because	of	this	kind
of	process	at	work	that	the	limit	of	accurate	weather-forecasting	is	about
ten	to	fourteen	days,	and	that	the	real	weather	can	also	flip	from	one
stable	state	to	another	stable	state	in	an	essentially	unpredictable	way.

It	is	the	question	of	precise	determination	of	initial	conditions	that
Lorenz	drew	attention	to	and	which	lies	at	the	heart	of	the	modern
understanding	of	chaos.	This	sensitivity	of	the	weather	(and	other
complex	systems)	to	initial	conditions	is	sometimes	referred	to	as	‘the
butterfly	effect‘,	after	the	title	of	a	paper	that	Lorenz	presented	to	a
meeting	in	Washington	DC	in	1972	–	‘Does	the	Flap	of	a	Butterfly‘s

Wings	in	Brazil	Set	off	a	Tornado	in	Texas?‘10	The	analogy	should	not	be
taken	entirely	seriously,	since	on	this	scale	in	the	real	world	there	are	so
many	processes	involved,	blurring	out	individual	contributions,	that	it	is
unlikely	that	a	flap	of	a	butterfly	in	Brazil	could	ever	be	identified	as	the
cause	of	a	specific	tornado	in	Texas	(or,	conversely,	that	a	flap	of
another	butterfly	in	China	prevented	a	tornado	from	forming	in	Texas).
But	it	does	provide	a	striking	metaphor	for	chaos.	Coincidentally,	when



the	double-pooled	attractor	discovered	by	Lorenz	is	plotted	out
graphically	on	paper	(or	a	computer	screen),	it	forms	a	pattern	rather
like	a	butterfly‘s	wings;	it	is	usually	known	as	the	Lorenz	attractor
(although	Lorenz	himself	calls	it	the	Butterfly	attractor),	and	has	become
the	most	familiar	and	striking	visual	image	for	chaos,	even	for	people
who	don‘t	know	what	the	image	actually	represents.

Figure	2.2	As	with	the	orbit	of	the	satellite	in	the	three-body	problem,	Edward	Lorenz	found	that
computer	‘predictions’	of	weather	properties	(such	as	temperature)	diverge	widely	from	almost	identical
starting	conditions.

The	weather,	it	turns	out,	is	sometimes	more	chaotic	than	at	other
times.	When	meteorologists	run	the	numerical	simulations	these	days,
they	don’t	just	take	the	exact	data	from	their	grid	points	of	observations
as	the	raw	material	for	a	single	forecast.	Instead,	to	find	out	if	the	errors
and	uncertainties	inherent	in	the	observations	matter	significantly	they
usually	run	each	forecast	several	times	with	slight	variations	in	the
starting	conditions.	If	all	the	forecasts	come	out	more	or	less	the	same,
they	know	that	the	overall	pattern	of	the	forecast(s)	can	be	trusted	–	the
weather	system	is,	if	you	like,	circling	one	of	the	deep	pools	in	phase
space.	But	sometimes	when	they	run	the	same	forecast	with	slightly
different	starting	conditions	they	get	widely	different	‘predictions’	for
the	weather	a	few	days	ahead.	This	tells	them	that	the	weather	is	in	a



chaotic	state,	equivalent	to	the	trajectories	wandering	over	the	sand	bar

in	phase	space,	and	none	of	the	forecasts	can	be	trusted.	This	is	why	the
forecasters	on	TV	sometimes	seem	more	certain	about	their	forecasts
than	they	are	on	other	occasions.	As	one	forecaster	has	ruefully
acknowledged,	‘we	can	predict	the	weather	accurately	provided	it
doesn‘t	do	anything	unexpected‘.11

Figure	2.3	The	Lorenz	(‘butterfly‘)	attractor.

You	can	see	chaos	at	work	in	your	pocket	calculator,	using	the
technique	of	iteration	that	is	so	important	in	all	this	kind	of	numerical

work.	Take	a	simple	expression,	2x2	–	1.	Choose	a	value	for	x	between	o
and	1,	with	a	good	few	decimal	places	–	say,	0.2468.	Use	this	number	as
x,	and	work	out	the	result.	Then,	use	that	number	as	x,	and	feed	it	back
into	the	calculation	for	the	next	iteration.	You	get	what	looks	like	a
string	of	random	numbers,	produced	by	a	completely	deterministic
process	obeying	a	simple	law.	Now	try	again,	starting	with	a	number
that	differs	from	your	first	number	by	just	one	part	in	the	last	decimal
place	–	say,	0.2469.	If	you	have	the	patience	to	keep	stabbing	away	at
the	keys	of	the	calculator	(or	the	nous	to	write	a	simple	computer
program	to	do	the	work	for	you)	you	will	find	that	you	end	up	with	a
completely	different	string	of	random-looking	numbers	after	the	first	few



iterations.	Yet	in	both	cases	every	number	is	precisely	determined	by	the

one	before	by	the	feedback	process	–	the	pattern	of	numbers	is	entirely
deterministic.	This	is	just	the	kind	of	thing	that	Lorenz	observed	–	and	if
you	try	any	of	this	on	different	calculators,	don‘t	be	surprised	if	you	get
different	‘answers‘,	because	different	calculators	round	off	numbers	in
their	internal	calculations	in	different	ways.

You	can	also	see	a	different	kind	of	behaviour.	Take	the	expression	x2

–	1,	which	looks	very	similar	to	the	first	expression.	Now,	for	any	value
of	x	you	start	out	with	(between	o	and	1),	after	a	while	the	pattern
settles	down	into	a	stable	state,	oscillating	between	o	and	–1.	It	is	said	to
be	‘periodic	with	period	two’	because	once	the	system	has	settled	down
into	this	pattern,	wherever	you	start	from	it	takes	two	steps	to	get	back
to	where	you	started.	And	you	can	have	periodic	behaviour	in	other
systems	where	it	takes	more	steps	to	get	back	to	where	you	started,	but
always	the	same	number	of	steps	for	that	particular	system,	wherever
you	start	from.	One	simple	law	gives	periodic	behaviour,	converging	on
an	attractor;	another	simple	law,	seemingly	very	similar	to	the	first	law,
gives	‘random’	behaviour	that	is	very	sensitive	to	initial	conditions.	If

you	have	a	taste	for	this	kind	of	thing,	you	can	explore	further;12	you‘ll
find	that	some	iterations	converge	on	a	single	value	and	get	stuck	there
(a	simple	attractor,	a	system	sometimes	referred	to	as	having	‘period
one’	because	just	one	iterative	step	takes	you	back	to	where	you	start),
some	are	seemingly	random,	and	some	are	periodic,	with	period	two
being	just	a	simple	case	hinting	at	much	more	complicated	possibilities.
All	of	these	patterns	of	behaviour	are	seen	in	the	real	world,	where	they
may	apply	to	things	as	diverse	as	the	dripping	of	a	tap,	the	way
populations	of	wild	animals	change,	or	the	oscillations	of	the	stock



market.	But	in	essence	we	have	already	found	the	underlying	simplicity
from	which	chaos	and	complexity	emerge	–	simple	laws,	non-linearity,
sensitivity	to	initial	conditions	and	feedback	are	what	make	the	world
tick.	Before	we	move	on	to	really	complex	things,	though,	it	seems
appropriate	to	round	off	the	story	of	planetary	orbits,	which	is	where	the
whole	thing	started.

Just	as	with	weather-forecasting,	the	key	to	understanding	the	long-
term	properties	of	the	Solar	System	came	with	the	advent	of	reasonably
fast	electronic	computers	capable	of	carrying	out	long	numerical
integrations	relatively	quickly.	Poincaré	had	proved	that	the	Solar
System	was	in	principle	subject	to	what	we	now	call	chaos,	but	it	was
then,	as	it	is	now,	quite	clear	that	in	practice	planets	such	as	the	Earth
follow	stable	orbits	for	a	very	long	time	–	otherwise,	we	would	not	be
here	to	wonder	about	such	things.	The	way	to	get	a	handle	on	chaos
within	the	Solar	System	was	to	look	at	systems	more	like	the	restricted
three-body	problem,	where	one	small	object	(or	a	series	of	small	objects)
moves	under	the	gravitational	influence	of	two	large	objects.	The	largest
objects	in	the	Solar	System	are	the	Sun	and	the	planet	Jupiter,	and	there
is	a	whole	family	of	small	objects	under	their	gravitational	influence,	the
thousands	upon	thousands	of	rocky	bodies	known	as	asteroids	which
orbit	in	a	belt	around	the	Sun	between	the	orbit	of	Mars	and	the	orbit	of
Jupiter.

The	planets	of	the	Solar	System	form	two	families,	separated	by	this
asteroid	belt.	Closer	to	the	Sun	there	are	four	small,	rocky	planets
(Mercury,	Venus,	Earth	and	Mars);	further	out	there	are	four	large,

gaseous	planets	(Jupiter,	Saturn,	Uranus	and	Neptune).13	The	basic
reason	for	this	division	is	clear	–	when	the	planets	were	forming,	the



heat	of	the	young	Sun	drove	most	of	the	gaseous	material	away	from	the
inner	part	of	the	Solar	System;	but	in	the	outer	regions	it	was	cool
enough	for	the	gas	to	accumulate	on	the	four	giant	planets.	Nor	is	the
origin	of	the	asteroid	belt	much	of	a	mystery	today.	Both	computer
models	and	studies	of	dusty	discs	of	material	around	young	stars	suggest
that	planets	form	‘bottom	up’	as	grains	of	dust	stick	together	to	make
larger	grains,	then	pieces	of	rock,	and	so	on.	In	the	region	between	Mars
and	Jupiter,	however,	the	gravitational	influence	of	Jupiter	disrupted
this	process	before	it	could	go	to	completion,	and	prevented	a	single
whole	planet	forming.	The	latest	simulations	suggest	that	by	the	time
Jupiter	grew	big	enough	to	begin	to	dominate	this	part	of	the	Solar
System	gravitationally,	perhaps	six	or	seven	objects	the	size	of	Mars
(itself	one-tenth	the	mass	of	the	Earth)	had	formed,	but	under	the
influence	of	Jupiter	they	collided	with	one	another	violently,	and	instead
of	sticking	together	to	make	one	big	planet	they	were	broken	up	and
fragmented	to	form	the	asteroid	belt,	leaving	Mars	itself	as	the	sole
survivor.

But	this	detailed	model	of	the	formation	of	the	asteroids	was	yet	to
be	developed	in	the	late	1970s,	when	a	PhD	student	at	Caltech,	Jack
Wisdom,	decided	to	study	the	present-day	orbits	of	the	asteroids	using	a
new	numerical	technique	and	the	best	computer	available.	Asteroids	had
only	been	discovered	in	the	nineteenth	century,	because	they	are	small
and	faint.	But	as	the	numbers	observed	grew,	it	soon	became	clear	that
their	orbits	are	not	spaced	out	evenly	across	the	asteroid	belt,	but	that
there	are	gaps	corresponding	to	essentially	empty	orbits.	These	are
known	as	Kirkwood	gaps,	after	the	American	astronomer	Daniel
Kirkwood,	who	drew	attention	to	them	in	the	late	1860s.	It	was	clear
from	the	beginning	what	was	special	about	these	orbits	–	they



from	the	beginning	what	was	special	about	these	orbits	–	they
correspond	to	certain	so-called	‘resonances’	with	the	orbit	of	Jupiter
itself.	But	until	Wisdom	(and	his	computer)	came	along,	it	was	not	at	all
clear	how	these	resonant	orbits	were	kept	clear.

We	have	all	experienced,	and	used,	resonance	when	playing	on	a
swing	as	a	child.	Resonance	is	a	way	of	getting	a	large	return	for	a
relatively	small	effort,	by	making	the	effort	at	just	the	right	time	and
pushing	a	system	the	way	it	‘wants’	to	go.	The	small	amount	of
‘pumping’	that	we	do	on	the	swing	has	to	be	timed	just	right	to	make	the
swing	travel	through	a	bigger	and	bigger	arc.	In	the	same	sort	of	way,
Jupiter	gives	a	nudge	to	an	asteroid	in	its	orbit	every	time	the	asteroid
passes	by	Jupiter,	between	Jupiter	and	the	Sun.	For	most	orbits,	these
nudges	are	more	or	less	random,	occurring	at	different	times	in	each
orbit,	as	if	you	stood	on	a	swing	and	jiggled	about	aimlessly,	so	there	is
no	big	effect.	But	resonant	orbits	are	different.	Suppose	an	asteroid	is	in
an	orbit	around	the	Sun	which	takes	exactly	twice	as	long	as	the	orbit	of
Jupiter.	Then,	the	asteroid	always	gets	the	nudge	from	Jupiter	at	the
same	part	of	its	orbit.	The	influence	of	the	giant	planet	can	add	up	to
disturb	the	orbit,	in	the	same	way	that	by	pumping	the	swing	at	the
right	time	you	can	make	it	swing	further	and	further	out	of	the	vertical.
This	wouldn’t	matter	much	if	the	orbit	was	stable	in	the	traditional
sense,	and	a	small	perturbation	simply	made	it	wander	a	little	way	out
and	back	again	(like	the	long-term	changes	in	the	orbits	of	Jupiter	and
Saturn	studied	by	Laplace).	But	if	the	orbit	is	one	that	is	sensitive	to
perturbations,	the	resonance	could	quickly	switch	the	orbiting	asteroid
from	its	more	or	less	circular	orbit	around	the	Sun	into	a	much	more
elliptical	orbit,	but	one	which	still	comes	back	with	the	same	regularity



to	the	resonant	point	with	Jupiter.	That	is	exactly	what	Wisdom	found,
and	published	in	1982	–	chaos	at	work	in	the	asteroid	belt,	in	particular
for	orbits	close	to	the	3:1	resonance	with	Jupiter.

But	even	that	wasn’t	quite	the	solution	to	the	puzzle	of	the	Kirkwood
gaps,	because	a	perturbation	that	can	switch	asteroids	out	of	these	gaps
could	just	as	easily	work	the	other	way	around,	switching	asteroids	from
elliptical	orbits	back	in	to	plug	the	gaps	(remember	the	double-lobed
attractor,	like	the	one	discovered	by	Lorenz).	Wisdom	pointed	out	that
the	solution	to	this	piece	of	the	puzzle	came	with	the	realization	that	the
asteroids	being	ejected	from	the	Kirkwood	gaps	as	a	result	of	chaos,
under	the	influence	of	Jupiter,	were	moving	into	orbits	that	crossed	the
orbits	of	the	inner	planets,	including	the	Earth.	Many	of	these	asteroids,
over	the	long	history	of	the	Solar	System,	have	been	taken	out	of	the
relevant	equations	entirely,	as	a	result	of	colliding	with	one	of	the	inner
planets,	so	there	is	no	reservoir	from	which	to	draw	the	asteroids	to	plug
the	gaps.	All	of	the	inner	planets	of	the	Solar	System	(and	our	Moon)
show	on	their	battered	faces	the	scars	of	many	such	impacts,	and	it	is
widely	believed	that	one	such	impact	on	Earth,	about	sixty-five	million
years	ago,	brought	an	end	to	the	era	of	the	dinosaurs	and	opened	the
way	for	the	rise	of	the	mammals,	including	ourselves.	This	implies	that
we	owe	our	existence	directly	to	the	effects	of	chaos	at	work	in	the
asteroid	belt,	and	carries	the	chilling	corollary	that	the	end	of
civilization	may	come	about	in	the	same	way.

For	what	it	is	worth,	though,	we	can	take	comfort	from	the
knowledge	that	the	end	of	civilization	will	not	come	with	the	Earth
switching	suddenly	into	an	orbit	that	either	takes	it	plunging	close	by
the	Sun	or	out	into	the	depths	of	space.	Over	the	years	since	1982,	the



computers	have	got	better	and	faster,	and	the	mathematicians	have
devised	more	cunning	programs,	so	they	have	been	able	to	look	a	long
way	into	the	future	(or	possible	futures)	of	the	Solar	System.	Like	their
counterparts	in	the	space	sciences,	the	researchers	involved	seem	to
delight	in	constructing	tortuous	acronyms	or	punning	names	for	their
projects,	two	of	which	were	known	as	LONG-STOP	(from	Long-term
Gravitational	Study	of	the	Outer	Planets)	and	the	Digitary	Orrery	(an
orrery	is	a	mechanical,	sometimes	clockwork,	working	model	of	the
Solar	System).	Some	of	these	studies	look	hundreds	of	millions	of	years
into	the	future,	and	show	that	although	the	orbits	of	the	planets	are
technically	chaotic,	unlike	the	situation	for	asteroids	in	the	Kirkwood
gaps	there	is	only	a	vanishingly	small	prospect	that	any	of	the	orbits	of
the	planets	proper,	including	that	of	the	Earth,	will	change	drastically
during	the	remaining	lifetime	of	the	Sun	in	its	present	form	–	that	is,
over	the	next	five	billion	years	or	so.	But	these	calculations	do	not
predict	‘the’	orbit	of	the	Earth,	or	any	other	planet.	They	are	sensitive	to
the	initial	conditions,	although	in	a	fairly	restricted	way.	For	example,
one	model,	developed	by	Jacques	Laskar	at	the	Bureau	des	Longitudes	in
Paris,	showed	that	the	Earth	will	follow	essentially	the	same	orbit	for	at
least	200	million	years	(the	limit	of	that	particular	numerical
integration).	But	it	also	showed	that	a	difference	of	just	15	metres	in
specifying	the	position	of	the	Earth	at	the	start	of	the	integration	doesn’t
stay	as	an	‘error’	of	15	metres	at	every	step	in	the	iteration	but,	because
of	non-linearity,	grows	into	an	uncertainty	so	big	after	100	million	years
that	we	cannot	say	where	in	its	orbit	the	Earth	will	be	at	any	chosen
moment	that	far	ahead.	The	error	has	grown	as	big	as	the	circumference
of	the	Earth’s	orbit,	nearly	950	million	kilometres.	The	rounding	errors



inherent	in	any	numerical	integration	–	the	choice	of	just	how	many
decimal	places	you	calculate	with,	whether	using	pencil	and	paper	or	an
electronic	computer	–	affect	the	outcome	of	the	calculation	in	very	much
the	same	way	that	Lorenz’s	simple	weather	model	was	affected.

One	consequence	of	this	is	that	if	you	use	such	a	model	to	calculate
the	orbit	of	the	Earth	(or	any	other	orbit)	over,	say,	the	next	100,000
years,	and	then	reverse	the	calculation,	you	don’t	get	back	to	where	you
started.	If	the	system	is	reasonably	stable,	you	will	get	back	somewhere
near	where	you	started,	in	the	same	corner	of	phase	space,	but	perhaps
all	you	will	be	able	to	say	is	that	the	planet	concerned	stays	in	more	or
less	the	same	orbit	around	the	Sun.	The	calculated	trajectories	are	non-
reversible,	even	though	we	have	been	brought	up	to	think	that	objects
obeying	Newton’s	laws	ought	to	follow	reversible	trajectories.	As	long	as
this	is	just	an	artefact	of	how	we	do	the	calculations,	it	doesn’t	change
the	way	we	think	about	the	Universe	very	much.	For	planets	like	the
Earth,	beyond	a	certain	number	of	decimal	places	the	orbit	we	compute
(or	the	trajectory	through	phase	space)	doesn’t	change	very	much
(although	it	does	change)	even	if	we	do	change	the	rounding-off	process
in	the	computer.	We	get	a	different	orbit	that	is	almost	exactly	the	same
as	the	previous	one	we	calculated.	Every	time	we	run	the	calculation
with	slight	modification	to	the	initial	conditions	we	get	a	similar	orbit.
All	the	orbits	occupy	much	the	same	region	of	both	real	space	and	phase
space,	so	that	although	the	orbit	moves	about	chaotically	from	one
possibility	to	another,	it	doesn’t	move	outside	this	range	of	possibilities
on	any	timescale	relevant	to	human	beings.	It	is	a	kind	of	restricted
chaos.	An	analogy	is	sometimes	made	to	the	behaviour	of	the	ball	in	a
roulette	wheel,	after	it	has	been	thrown	into	the	spinning	wheel	but



before	it	has	settled	into	one	of	the	available	holes.	It	bounces	around	in
an	essentially	chaotic	fashion,	but	those	bounces	are	all	restrained	to
‘orbits’	inside	the	rim	of	the	wheel	(assuming	the	croupier	has	done	his
job	properly).	A	more	homely	analogy	would	be	with	someone	who
saves	the	hassle	of	selecting	a	pair	of	socks	in	the	morning	by	only
buying	green	socks.	He	knows	that	he	can	pick	two	socks	at	random
from	the	drawer	every	day	and	they	will	both	be	green,	although	they
are	different	socks	with	different	detailed	properties.	Even	with	his	eyes
shut,	he	will	never	pull	a	red	sock	from	the	drawer.

This	raises	one	point	which	needs	to	be	addressed,	even	though	it	is
very	much	an	aside	from	the	main	thread	of	our	story.	There	are	people
who	believe	that	the	inner	planets	of	the	Solar	System,	in	particular
Venus,	have	changed	their	orbits	dramatically	withinthe	past	few
thousand	years,	and	that	these	changes	are	described	in	various	ancient
myths	and	legends.	This	belief	is	based	on	a	very	imaginative
interpretation	of	those	ancient	myths,	and	a	very	poor	understanding	of
orbital	dynamics	and	such	fundamentals	as	the	law	of	conservation	of
momentum;	unfortunately,	though,	when	respectable	astronomers	talk	of
chaos	in	the	Solar	System,	this	is	grist	to	the	mill	of	such	fantasies,	and
you	may	see	it	suggested	that	chaos	theory	‘explains’	or	‘proves’	that
Venus	only	recently	moved	into	its	present	orbit.	It	does	nothing	of	the
kind.	The	calculations	can	be	run	as	well	backwards	in	time	as	forwards,
and	they	show	the	same	kind	of	pattern	–	we	cannot	say	exactlywhere
Venus	was	in	its	orbit	on,	say,	4	July,	5	million	BC,but	we	can	say	with
great	confidence	what	kind	of	orbit	it	was	in	then	–	one	just	like	its
present	orbit	(a	green	sock,	not	a	red	one).	There	is	no	chance	at	all	that
Venus,	or	any	of	the	other	planets,	has	experienced	a	dramatic	orbital



change	at	any	time	during	(conservatively)	the	past	five	million	years,
which	more	than	covers	the	time	since	our	own	ancestral	line	split	off
from	that	of	the	other	African	apes.	For	sure,	no	human	being	has	ever
seen	Venus	wandering	about	the	sky	as	it	changed	its	orbit.

Before	we	leave	the	planets,	though,	it’s	worth	mentioning	that	chaos
doesn’t	only	affect	orbits.	Planets	spin	on	their	axes	(the	Earth	once
every	twenty-four	hours),	and	they	wobble	as	they	spin,	because	of	the
gravitational	influence	of	the	Sun	(in	a	similar	way,	a	child’s	spinning
top	wobbles	as	it	spins,	because	of	the	gravitational	influence	of	the
Earth).	Resonances	can	occur	between	the	period	of	the	spin	and	the
period	of	the	wobble,	which	in	the	right	part	of	phase	space	can	lead	to
a	sudden,	chaotic	change	in	the	angle	of	tilt	of	a	planet	(its	obliquity).
This	might	happen,	for	example,	if	the	spin	of	the	planet	gradually	slows
down	and	as	a	result	the	system	enters	a	sensitive	region	of	phase	space.
The	tilt	of	the	Earth	out	of	the	vertical	(relative	to	a	line	joining	the
Earth	and	the	Sun)	is	about	23	degrees	today,	and	this	is	the	cause	of	the
seasonal	cycle	of	weather.	But	it	turns	out	that	the	presence	of	our	large
Moon	acts	as	a	stabilizer	which	prevents	any	wild	variations	in	this	tilt.
That	is	not	the	case	for	Mars,	or	the	other	inner	planets,	where	there	is
no	large	moon	to	act	as	a	stabilizer	(the	two	tiny	moons	of	Mars,	thought
to	be	captured	asteroids,	are	totally	inadequate	for	the	task).	It	happens
that	the	average	tilt	of	Mars	is	about	24	degrees,	but	computer
simulations	show	that	this	can	change	dramati	cally	over	a	very	wide
range	of	values,	at	least	±20	degrees	outside	this	average.	There	is	also
direct	evidence	that	Mars	has	experienced	dramatic	changes	of	climate
in	the	past,	in	the	form	of	what	seem	to	be	dried-up	riverbeds
smallouring	the	now-arid	surface	of	the	Red	Planet;	these	extreme



climatic	events	may	well	be	related	to	epochs	in	the	past	when	the
frozen	polar	region	has	nodded	towards	the	Sun,	producing	an	extreme
of	summer	heat,	and	warmed	sufficiently	to	make	the	polar	cap	of	frozen
carbon	dioxide	or	water	evaporate	or	melt.	Probably	the	same	sort	of
wobble	has	happened	on	Venus	and	Mercury,	but	there	are	no	visible
traces	on	the	surface	of	the	planets,	because	on	Mercury	there	is	no
atmosphere	and	on	Venus	the	surface	seems	to	have	been	turned	over	by
intense	volcanic	activity.

This	leaves	the	Earth,	happily	stable	at	present.	In	the	very	long	term,
though,	as	the	Moon	recedes	from	the	Earth	as	a	result	of	tidal	forces,	its
influence	will	wane	and	in	the	distant	future	the	tilt	of	our	planet	will
also	vary	chaotically,	perhaps	suddenly	increasing	to	as	much	as	90
degrees,	so	that	in	summer	it	will	be	as	hot	at	the	pole	as	it	is	now	at	the
equator,	while	the	other	pole	experiences	a	severe,	dark	winter,	and	six
months	later	the	situation	is	reversed.	This	would	hardly	be	ideal	for	life
as	we	know	it	–	so	although	chaos	in	the	Solar	System	may	have	been
responsible	for	our	own	existence	(through	the	impact	of	the	asteroid
that	finished	off	the	dinosaurs),	it	is	the	absence	of	chaos	in	the	changing
obliquity	of	the	Earth	that	has,	thanks	to	the	presence	of	the	Moon,
allowed	life	on	Earth	to	evolve	under	more	or	less	stable	climatic
circumstances	for	billions	of	years.	There	is,	though,	another	twist	in	the
tale.	The	best	suggestion	we	have	for	the	presence	of	such	a	large	Moon
associated	with	the	Earth	is	that	it	was	produced	in	the	early	stages	of
the	history	of	the	Solar	System	when	a	Mars-sized	object	from	the
asteroid	belt	was	diverted	from	its	orbit	through	the	workings	of	chaos
and	collided	with	the	Earth,	splashing	molten	material	that	then	formed

the	Moon	out	into	space.14



There	is	one	last	point–perhaps	the	most	important	point	of	all–that
we	want	to	draw	to	your	attention	before	we	leave	the	investigation	of
the	Solar	System.	We	pointed	out	a	little	earlier	that	if	you	use	a
numerical	integration	to	calculate	the	orbit	of	a	planet	and	then	reverse
the	calculation,	you	don’t	get	back	to	where	you	started.	The	calculated
trajectories	are	non-reversible.	And	we	said	that	as	long	as	this	is	just	an
artefact	of	how	we	do	the	calculations,	it	doesn’t	change	the	way	we
think	about	the	Universe	very	much,	since	Newton‘s	laws	are	still
reversible	in	principle.	But	how	does	the	Universe	‘do	the	calculations’?
Like	Laplace,	you	might	imagine	a	perfect	intelligence	(living	or
electronic)	which	would	be	able	to	store	exact	information	on	all	the
relevant	properties	(such	as	the	position	and	momentum	of	every
particle),	and	then	carry	out	the	relevant	calculations	perfectly.	Surely,
they	would	then	be	reversible.	But	just	how	many	decimal	places	do	you
need	to	achieve	perfection?	How	big	would	the	memory	of	our	perfect
computer	have	to	be?

At	first	sight,	that	seems	an	impossible	question.	But	it	turns	out	to
have	a	very	simple	answer,	concerned	with	the	nature	of	numbers.	When
most	people	talk	about	numbers,	they	think	of	integers–numbers	like	1,
2,	27,	44,196,	and	so	on.	We	are	also	used	to	simple	fractions	– 	and
the	like.	But	for	most	purposes	in	everyday	life,	that’s	as	far	as	it	goes.
Even	when	we	encounter	decimals,	it	is	usually	only	in	terms	of
something	like	money,	and	then	usually	to	just	a	couple	of	decimal
places,	so	that	we	are	all	familiar	with	the	idea	that	£17.46	means
‘seventeen	pounds	and	forty-six	pence’.	But	there	is	a	literal	infinity	of
other	numbers	that	never	come	into	consideration	in	everyday	life.
Worse–there	is	an	infinity	of	numbers	in	between	any	two	numbers	that



we	can	think	of.	This	is	fairly	obvious	in	terms	of	decimals.	Take	the
integers	1	and	2.	Between	1	and	2	there	must	be	a	set	of	numbers	with
one	decimal	place	(1.1,1.2…	1.8,1.9),	and	between	each	of	those
numbers	there	is	another	set	of	numbers	with	one	more	decimal	place
(1.11,	1.12,	1.13	…	1.18,	1.19),	and	between	each	of	those	numbers–but
you	get	the	picture.	However	many	decimal	places	there	are	in	the	two
numbers	you	start	with,	the	same	reasoning	tells	you	that	there	are
infinitely	many	numbers	in	between	them–even	for	numbers	like
247.8503468295667	and	247.8503468295668,	or	numbers	with	enough
decimal	places	to	fill	this	entire	book	that	differ	only	in	the	last	digit,	or
numbers	big	enough	to	fill	the	entire	Universe	with	books,	that	differ
only	in	the	last	digit.

This	wouldn’t	matter	much	if	it	were	just	a	mathematical	curiosity.
We	know,	for	example,	that	some	infinities	are	well	behaved	(as	in	the
case	of	some	infinite	series)	and	can	be	represented	in	simple	ways.	The
fraction	 ,	for	example,	corresponds	to	a	decimal	with	an	infinite
number	of	digits–0.3333333333	…	But	it	can	be	written	in	a	very
simple,	compact	form,	without	filling	the	Universe	with	books	all
containing	boring	rows	of	3s.	Other	kinds	of	decimal	expression	can	also
be	represented	compactly.	The	decimal	0.675486754867548	…,	for
example,	can	be	described	by	writing	‘take	the	digits	67548	and	keep
repeating	them	for	ever’.	Such	a	compact	form	of	describing	something
too	big	to	handle	conveniently	if	spelled	out	in	full	is	sometimes	called
an	algorithm	(and	might	be	represented	either	in	words	or	by	a	simple
mathematical	expression);	an	expression	which	can	be	represented
compactly	in	this	way	is	said	to	be	algorithmically	compressible.	But
even	the	Ancient	Greeks,	who	never	came	up	with	the	idea	of	decimal



numbers,	knew	that	there	were	some	numbers	which	are	not
algorithmically	compressible	and	cannot	be	written	in	compact	form.
Worse	–	most	numbers	cannot	be	written	in	such	a	simple	form.

The	numbers	which	can	be	written	in	a	simple	form	are	fractions–
they	are	the	ratios	of	one	integer	to	another,	like	 	(even	the
integers	are,	in	a	sense,	ratios,	and	could	be	written	as	 	and	so
on).	Because	they	involve	ratios,	the	Greeks	called	these	rational
numbers.	But	there	are	other	numbers,	the	most	famous	being	π,	which
can	never	be	written	as	the	ratio	of	two	numbers.	For	that	reason,	they
are	called	irrational	numbers,	and	can	only	be	expressed	as	an	infinite

string	of	non–repeating	decimal	digits.15	The	Greeks,	lacking	decimals,
didn’t	put	it	like	that,	but	they	were	well	aware	that	such	irrational
numbers	existed.	And	that	most	numbers	are	irrational!	This	strikes	at
the	heart	of	chaos	and	the	Newtonian	(or	Laplacian)	concept	of
reversibility,	as	we	can	see	by	trying	to	specify	the	exact	location	of	a
system	in	phase	space.

The	‘system’	can	be	very	small	–	a	single	particle	moving	around	in	a
box,	under	the	influence	of	gravity.	The	state	of	the	particle	is
determined	by	its	position	and	momentum,	and	Newton	proved	that	it
will	behave	as	if	all	its	mass	were	concentrated	in	a	mathematical	point
at	the	centre	of	the	particle.	‘All’	that	we	have	to	do	to	determine	the
location	of	the	system	in	phase	space	is	to	specify	the	position	of	that
point,	and	the	momentum	of	the	particle.	But	let’s	concentrate	on
position,	simplifying	the	problem	even	more.	We	can	simplify	things	yet
further	by	assuming	that	the	particle	is	moving	in	a	straight	line–
perhaps,	falling	under	the	influence	of	gravity.	Now,	we	just	have	to
specify	the	position	of	the	particle	on	that	line,	the	simplest	problem



imaginable	in	physics.	But	this	turns	out	to	be	impossible,	except	in	very
rare	cases.	Suppose	we	know	that	the	particle	is	somewhere	between	two
points	A	and	B.	We	need	to	know	what	precise	fraction	of	the	distance
between	A	and	B	it	has	already	covered.	No	problem	if	it	is 	of	the	way
down	the	line,	or	 §ths	of	the	way	along,	or	any	other	rational	fraction.
But	between	every	pair	of	points	on	the	line	represented	by	rational
fractions	there	are	infinitely	many	points	represented	by	irrational
numbers,	and	each	of	those	points	can	only	be	specified	by	an	infinite
string	of	digits,	with	no	way	to	compress	this	into	a	compact	form.	If,	for
example,	the	particle	is 	along	the	line	between	A	and	B,	we	can
represent	this	as	accurately	as	we	like	by	working	out	the	expression	to
as	many	decimal	places	as	we	like,	but	we	can	only	represent	this	exactly
by	writing	out	an	infinite	number	of	digits.	And	this	is	just	for	a	single
particle	moving	in	a	straight	line!	In	a	system	that	is	sufficiently
sensitive	to	initial	conditions,	it	is	always	possible	that,	no	matter	how
many	digits	we	choose	to	work	with,	the	entire	future	of	the	system
may,	as	Lorenz	discovered,	depend	significantly	on	the	value	of	the	next
digit,	the	one	we	have	in	effect	thrown	away.

This	means	that	a	computer	with	an	infinite	memory	is	required	to
specify	the	state	of	a	single	particle.	No	computer	can	be	bigger	than	the
entire	Universe,	and	if	you	define	the	Universe	as	‘everything	there	is’,
this	means	that	the	only	system	that	can	replicate	the	behaviour	of	the
Universe	in	every	detail	is	–	the	Universe	itself.	Even	if,	as	Laplace
thought,	the	Universe	is	entirely	deterministic	and	the	whole	future	is
contained	within	its	present	state,	there	is	no	way	at	all	to	predict	or
know	the	future,	except	by	watching	the	Universe	evolve.	Whether	or
not	we	have	free	will,	the	Universe	behaves	as	if	we	have	free	will,



which	is	really	all	that	matters.	The	Universe	is	ignorant	of	its	own
future,	and	is	its	own	fastest	simulator.

But	what	about	reversibility	and	the	arrow	of	time?	People	used	to
talk	glibly	about	‘waving	a	magic	wand’	to	reverse	the	motion	of	every
particle	in	the	Universe	(or	in	a	box	of	gas)	to	make	time	run	backwards.
But	this	is	now	seen	to	be	impossible.	Even	leaving	aside	such	subtleties
as	the	theory	of	relativity,	which	raises	profound	questions	about	how
every	motion	in	the	Universe	could	be	reversed	simultaneously	when
signals	can	travel	no	faster	than	the	speed	of	light,	and	what	is	meant	by
‘simultaneous’	depends	on	where	you	are	observing	the	Universe	from,	it
is	impossible	to	reverse	precisely	the	motion	of	even	a	single	particle.	To
do	that,	you	would	(except	in	very	rare	cases	where	the	motion	is,	for	a
split-second,	described	by	rational	numbers)	first	have	to	specify	its
present	state	to	an	infinite	number	of	decimal	places,	in	order	to	make
the	exact	reversal.	This	is	not	possible	in	principle,	not	just	because	of
human	inadequacies.	This	seems	a	more	than	adequate	bonus	to	receive
for	learning	that	chaos	is	inevitable.	The	Universe	cannot,	in	principle,
be	predicted	in	all	its	detail;	but,	equally,	time	cannot,	in	principle,	be
reversed.

The	ideas	presented	in	this	chapter	are	the	bedrock–the	deep
simplicity–upon	which	the	complexity	of	the	Universe	is	based.	Building
from	this	bedrock,	we	can	move	on	to	see	how	the	complexity	of	the
Universe,	and	life	itself,	has	emerged	from	the	chaos.	If	you	are	already
familiar	with	chaos	and	fractals,	you	can	conveniently	skip	the	next
chapter,	and	move	on	to	Chapter	4;	but	I	hope	you	will	stay	with	us	for	a
brief	but	breathtaking	ride	into	the	realm	of	chaos	itself,	and	a
discussion	of	that	related	topic	which	has	become	de	rigueur	in	any



investigation	of	chaos,	the	theory	of	fractals.	This	is	not	so	much	of	an
aside	as	you	might	think,	since	it	takes	us	to	the	borderland	of	life	itself;
and	understanding	the	emergence	of	life	is	the	ultimate	aim	of	our
discussion.



3
Chaos	out	of	Order

The	kind	of	chaos	that	we	are	talking	about	now,	what	scientists	of	the
twenty-first	century	mean	by	‘chaos’,	is	not	the	same	as	the	kind	of	chaos
that	the	Ancients	referred	to,	or	what	we	mean	by	chaos	in	everyday
life.That	kind	of	chaos	is	completely	random	and	unpredictable	even	in
principle.	But	the	kind	of	chaos	we	are	discussing	here	is	completely
orderly	and	deterministic,	with	one	step	following	on	from	another	in	an
unbroken	chain	of	cause	and	effect	which	is	completely	predictable	at
every	stage	–in	principle.	It	is	just	that	in	practice	it	is	impossible	to
predict	in	detail	what	is	going	to	happen	more	quickly	than	events
unfold	in	real	time.	The	classic	example	of	this	comes	from	the	study	of
turbulence,	which	occurs	in	many	places,	but	whose	importance	we	can
highlight	in	one	of	the	simplest	examples,	the	way	the	flow	of	water	in	a
river	changes	as	the	current	increases.

For	our	simple	model,	we	can	imagine	a	smoothly	flowing	river	in
which	there	is	one	large	rock	sticking	out	above	the	surface.	The	flowing
water	of	the	river	divides	around	the	rock,	and	joins	up	again	seamlessly
on	the	other	side,	so	that	small	chips	of	wood	floating	on	the	water
follow	these	‘streamlines’.	If	there	is	rain	upstream,	the	flow	of	the	river
will	increase,	and	as	it	does	so	it	goes	through	at	least	three	distinct
changes,	all	of	which	you	have	probably	seen	without	thinking	too



deeply	about	their	significance.	First,	as	the	flow	builds	up,	little
whirlpools	appear	behind	the	rock.	These	vortices	stay	in	the	same	place,
and	a	chip	of	wood	floating	downstream	may	get	trapped	in	one	of	them
and	go	round	and	round	for	a	long	time.	This	is	very	similar	to	the	kind
of	behaviour	seen	in	phase	space	in	the	Lorenz	attractor–a	kind	of
whirlpool	around	which	a	system	cycles	for	a	long	time.	In	phase	space,
this	kind	of	attractor	is	known	as	a	limit	cycle,	because	wherever	the
system	starts	out,	in	the	limit	it	will	be	attracted	to	the	specific	repetitive

pattern	of	behaviour.1	Using	slightly	sloppy	(but	reasonably	clear)
language,	we	might	call	each	little	whirlpool	behind	the	rock	a	‘limit
cycle’.

At	the	next	stage,	as	the	speed	of	the	water	flowing	downstream
increases,	vortices	form	behind	the	rock,	but	don’t	stay	there.	They
detach	themselves	(or	are	detached	by	the	flow),	and	move	away
downstream,	retaining	their	separate	existence	for	a	while	before
dissolving	into	the	flow.	As	they	do	so,	new	vortices	form	behind	the
rock	and	detach	in	their	turn.	Now,	a	chip	of	wood	might	get	caught	in
one	of	these	eddies	and	be	carried	downstream	still	circling	around	in
the	vortex	as	long	as	the	vortex	lasts.

As	the	flow	of	water	increases	still	further,	the	region	behind	the	rock
where	the	vortices	survive	gets	smaller	and	smaller,	with	vortices
forming	and	breaking	up	almost	immediately	to	produce	a	choppy
surface	in	which	there	are	seemingly	only	irregular	fluctuations	–
turbulence.	Eventually,	when	the	flow	is	fast	enough,	all	trace	of	order
in	the	region	behind	the	rock	disappears.	No	vortices	form	and	the	entire
surface	of	the	water	breaks	up	behind	the	rock	into	unpredictable
chaotic	motion.



Spelled	out	like	this,	there	are	two	key	features	of	the	route	from
order	into	chaos	that	turbulence	highlights.	First,	something	is	changing.
It	seems	almost	too	obvious	to	mention,	but	it	is	central	to	the	whole
story.	What	looks	like	the	same	system	can	be	described	in	simple	terms
under	some	conditions,	in	terms	of	chaos	under	other	conditions,	and
there	is	a	complex	region	in	between	the	two	where	interesting	things
happen	(in	this	case,	the	‘birth’	of	vortices).	Just	one	thing	–	one
parameter	–	is	changing	in	this	system,	the	speed	with	which	the	water
is	flowing.	Increasing	the	value	of	that	one	parameter	past	a	critical
point	is	enough	to	bring	about	the	onset	of	chaos.	Secondly,	when	you
look	in	detail	at	the	way	vortices	break	up	behind	the	rock	during	the
complex,	intermediate	stage	between	order	and	chaos,	you	find
something	very	interesting.	This	discovery	involves	painstaking	attention
to	detail	but	no	very	technical	equipment	(at	least,	not	to	see	the	broad
pattern	of	what	is	going	on).	Leonardo	da	Vinci	drew	attention	to	it	half
a	millennium	ago.	He	pointed	out	that	a	whirlpool	that	detaches	from
the	rock	and	moves	downstream	doesn’t	just	disappear.	It	breaks	up
inside	into	smaller	vortices,	which	in	turn	break	up	into	smaller	vortices,
eddies	within	eddies	within	eddies	in	what	seems	to	be	an	endless
process	of	bifurcation.	The	road	to	chaos	involves	what	seems	to	be	an
infinite	number	of	choices	operating	on	an	infinitely	small	scale	–	at
least,	it	does	in	the	case	of	turbulence.	Can	we	see	anything	similar	at
work	somewhere	else?

Of	course,	the	answer	is	‘yes’.	One	place	you	can	see	something
similar	at	work,	still	involving	flowing	water,	is	in	the	dripping	of	a	tap.
If	you	start	with	the	tap	turned	off,	and	open	it	very	slightly,	it	is	easy	to
produce	a	steady	dripping,	which	echoes	in	the	sink	below	like	the



monotonous	beat	of	a	moronic	drummer	–	drip,	drip,	drip,	drip	…	It	is	a
rhythm	with	period	one,	in	the	jargon	of	the	trade.	Open	the	tap	a	little
further,	and	it	is	still	pretty	easy	(even	I	can	do	it)	to	see	and	hear	the
system	switch	into	a	rhythm	with	period	two,	like	a	slightly	more	skilful
drummer	beating	out	rat-tat,	rat-tat,	rat-tat,	rat-tat…	As	you	open	the
tap	still	further,	things	begin	to	get	more	interesting,	and	then
completely	messy.	After	period	two,	it’s	quite	hard	to	detect	the
interesting	stuff.	With	one	particular	tap	in	the	house	I	live	in,	I	can
open	it	to	a	point	where	I	more	or	less	convince	myself	that	what	I	am
hearing	is	a	four-time	beat	–	rat-a-tat-tat,	rat-a-tat-tat,	rat-a-tat-tat,	rat-a-
tat-tat	–	that	is,	a	rhythm	with	period	four.	But	to	be	completely	honest
I’m	not	sure	whether	this	isn’t	just	because	I	expect	to	hear	it,	because	I
know	that	that	is	what	is	revealed	in	laboratory	experiments	under

carefully	controlled	conditions.2	The	process	is	known	as	period
doubling,	for	obvious	reasons;	but	it	cannot	continue	indefinitely.	At
some	critical	point	(very	soon,	in	the	case	of	opening	the	tap)	repeated
period	doublings	(repeated	bifurcations)	produce	a	complicated,
seemingly	random	pattern	of	dripping,	as	the	system	becomes	chaotic.
Open	the	tap	still	further,	and	the	drops	merge	to	form	a	smooth	flow;
open	it	further	still,	and	the	flow	becomes	turbulent	and	messy.	But	we
don’t	want	to	go	that	far	now,	although	we	will	return	to	turbulence
shortly.

The	best	example	of	the	period-doubling	route	to	chaos	comes	from
another	area	of	science	entirely,	and	hints	at	just	how	fundamental	and
widespread	the	implications	of	chaos	are.	There’s	a	very	simple
equation,	called	the	logistic	equation,	that	does	a	rather	good	job	of
describing	how	the	population	of	a	species	changes	from	one	generation



to	the	next.	To	keep	it	very	simple,	we	can	assume	that	we	are	dealing
with	some	kind	of	insect	where	the	entire	adult	population	dies	off	in
winter,	after	laying	eggs	that	will	hatch	out	to	provide	a	new	generation
the	following	spring.	We	start	out	with	a	population	containing	x
individuals.	Obviously,	the	number	of	individuals	in	the	next	generation
(the	number	that	survive	to	breed	in	their	turn,	that	is)	depends	on	the
number	of	eggs	that	hatch	(the	birth	rate),	which	depends	on	how	many
eggs	were	laid,	so	if	on	average	(averaging	over	males	and	females)	each
insect	lays	B	eggs,	the	new	population	will	be	Bx.	Except	that	this	takes
no	account	of	individuals	that	fail	to	find	food	and	starve,	and	don’t
survive	to	reproduce	in	their	turn.	This	death	rate	depends	on	the	size	of
the	original	population	–	the	more	individuals	there	are,	the	harder	it
will	be	for	each	of	them	to	get	enough	food.	We	can	simplify	things	a
little	further	by	setting	an	upper	limit	on	the	population	(quite	sensible,
if	you	think	in	terms	of,	say,	the	number	of	greenfly	that	can	inhabit	a
single	rosebush)	and	dividing	the	actual	population	by	this	number	so
that	the	value	we	use	for	x	is	always	between	o	and	1.	This	trick	is	called
renormalization.	Now,	in	order	to	take	account	of	the	premature	death
rate,	we	can	multiply	the	growth	factor	Bx	by	a	new	term,	(1	–	x).	If	the
population	is	very	low	(as	near	to	zero	as	makes	no	difference),	almost
every	individual	survives	and	finds	food,	so	the	growth	rate	is	almost
exactly	Bx;	if	the	population	is	very	high,	x	is	very	nearly	1,	(1	–	x)	is
very	nearly	zero,	and	most	of	the	population	starve	or	fall	prey	to
predators.	In	between,	the	population	may	rise	or	fall	from	one
generation	to	the	next	depending	on	the	exact	value	of	the	birth	rate,	B.
We	can	see	how	the	population	changes	for	different	values	of	B	by
iterating	the	expression



x(next)	=	Bx(1	–	x)

where	x(next)	is	the	population	in	the	next	generation.	Multiplying	out

the	right-hand	side	of	the	expression	we	have	Bx	–	Bx2,	highlighting	the

fact	that	this	process	is	non-linear	(because	of	the	x2	term)	as	well	as
involving	feedback	(through	the	iteration).

If	B	is	less	than	1,	it	means	that	the	population	fails	to	reproduce
itself	from	one	generation	to	the	next.	Each	individual	adult	leaves,	on
average,	less	than	one	offspring,	a	recipe	for	evolutionary	disaster,	and
the	population	must	eventually	die	out,	whatever	the	value	of	x	you	start
with.	Interesting	things	happen	when	B	is	bigger	than	1,	and	you	can
investigate	these	interesting	things	for	different	values	of	B	and	x	using	a
calculator	or	a	computer,	or	even	pencil	and	paper.	From	the	1950s
onwards	many	ecologists	did	just	that,	using	versions	of	the	logistic
equation	(which	can	be	adapted	fairly	easily	to	include	the	effects	of
prey	on	the	population,	or	two	populations	interacting	in	other	ways,
such	as	competing	for	food)	to	try	to	find	models	which	could	provide
insight	into	the	behaviour	of	real	populations	of	various	species.	But,	to
a	large	extent	because	of	the	limitations	of	the	computing	facilities
available	to	them,	they	did	not	probe	the	most	interesting	possibilities,
and	concentrated	on	the	more	orderly	implications	of	the	equation,
equivalent	to	hydrodynamicists	ignoring	turbulence	and	concentrating
on	the	state	of	the	river	when	eddies	are	forming	and	breaking	away
from	behind	the	rock	in	an	orderly	fashion.

If	B	is	bigger	than	1	but	less	than	3,	it	turns	out	that	there	is	what	we
would	now	call	an	attractor	for	this	simple	logistic	equation.	Whatever
value	of	the	population	you	start	with	(any	value	of	x	between	o	and	1),



after	a	sufficiently	large	number	of	generations	it	settles	down	to	a
steady	level,	corresponding	to	a	constant	population.	The	exact	value	it
settles	down	at	rises	slightly	as	B	is	increased,	and	for	values	of	B	close

to	(but	less	than)	3	it	settles	down	at	0.66,	corresponding	to	 	of	the
maximum	possible	population.	It	may	start	small	and	rise,	overshooting
this	value	and	then	zigzagging	either	side	of	0.66	in	alternate
generations,	getting	closer	and	closer	to	the	attractor	(like	the
approximation	for	π	mentioned	at	the	beginning	of	Chapter	2),	or	it	may
start	large	and	fall	towards	this	value,	overshooting	and	oscillating	in	the
same	way.	But	if	you	carry	out	enough	iterations,	it	always	settles	down
to	0.66.	If	you	make	B	bigger,	the	oscillations	get	more	extreme	and	take
longer	to	settle	down,	but	as	long	as	B	is	less	than	3	they	do	eventually
converge	on	the	attractor.	But	when	B	reaches	3,	something	different
happens.

As	soon	as	B	is	just	a	little	bit	bigger	than	3,	the	pattern	changes.
Now,	once	the	iteration	has	been	carried	out	enough	times,	the
population	switches	between	two	different,	constant	levels	in	alternate
generations.	The	single	attractor	has	split	in	two	(bifurcated)	and	the
period	has	doubled,	from	1	to	2.	This	can	be	understood	in	terms	of	real
populations.	In	one	year,	there	is	a	large	population	which	eats	all	the
food.	As	a	result,	many	individuals	starve	and	die	without	reproducing.
So	the	next	generation	has	a	small	population,	all	of	which	find	plenty	of
food	and	lay	eggs	–	and	so	on.	If	you	plot	all	this	out	on	a	graph,	for
values	of	B	starting	below	3	and	rising	above	3,	you	get	a	diagram	that
looks	something	like	a	tuning	fork	laid	on	its	side,	as	the	single	attractor
bifurcates.

All	this	is	straightforward	enough	to	explain	in	words	and	plot	out	on



diagrams,	once	the	calculations	have	been	done,	but	very	tedious	to
calculate.	Calculating	all	the	iterations	for	just	one	value	of	B	is	boring
enough,	and	in	order	to	look	closely	at	what	happens	near	the	critical
value	3	you	need	to	carry	out	many	iterations	for	many	slightly	different
values	of	B.	The	first	person	to	probe	the	behaviour	of	the	logistic
equation	in	the	kind	of	detail	needed	to	show	how	the	overall	pattern	of
behaviour	changes	as	B	is	increased	was	the	Australian-born	physicist
turned	ecologist	Robert	May,	working	at	Princeton	in	the	early	1970s.
Then	in	his	late	thirties,	May	had	just	the	right	kind	of	background	to
apply	ideas	from	physics	and	mathematics	in	biology,	and	it	was	just	the
right	time	and	place	to	take	advantage	of	the	increasing	power	and
speed	of	electronic	computers.	Having	found	the	bifurcation	at	B	=	3,
the	obvious	next	step	was	to	increase	B	more	and	see	what	happened.
The	result	was	amazing.	At	a	value	of	3.4495,	each	of	the	two	prongs	in
the	tuning	fork	diagram	bifurcates,	producing	a	system	that	oscillates
between	four	different	populations	(period	four).	At	B	=	3.56,	each	of
these	attractors	splits	in	two,	and	the	population	jumps	about	between
eight	different	levels;	at	3.596,	another	doubling	gives	sixteen	possible
population	levels,	and	by	this	time	any	biologist	studying	a	real
population	of	creatures	obeying	this	simple	deterministic	rule	would	be
hard	pressed	to	see	any	order	among	the	seemingly	chaotic	fluctuations
of	a	population	jumping	between	these	levels	from	one	generation	to	the
next.	The	bifurcations,	you	will	have	noticed,	get	closer	and	closer
together	as	the	value	of	B	is	increased,	and	developments	from	May’s
early	work	show	that	at	3.56999	the	number	of	attractors	available	to
the	population	becomes	infinite,	so	that	anyone	studying	how	the
population	changes	from	year	to	year	will	see	genuine	deterministic



chaos.

But	there’s	more.	Although	it	is	mostly	chaos	for	values	of	B	greater
than	3.56999,	there	are	small	ranges	of	values	for	B	where	order	is
restored,	a	kind	of	clear	window	among	the	confusion	of	the	chaos.	For
example,	if	B	is	a	little	greater	than	3.8	and	a	little	less	than	3.9,	the
system	seems	to	settle	down	to	a	stable	state	resembling	the	behaviour
when	B	is	less	than	3.	But	as	the	value	of	B	is	slowly	increased,	once
again	we	see	repeated	bifurcations	(period	doublings),	just	like	the
pattern	we	see	for	values	of	B	just	above	3.	Soon,	we	go	through	all	the
same	stages	as	before,	and	chaos	reappears.	But	the	pattern	we	see	is
very	similar	indeed	to	the	original	pattern,	except	that	it	is	on	a	smaller
scale.	And	within	this	new,	smaller-scale	version	of	chaos	there	is	a
window,	just	like	the	window	where	we	found	order	between	3.8	and
3.9;	and	within	that	window,	the	whole	pattern	repeats	again.	The
repetition	goes	on	for	ever,	with	the	same	pattern	of	behaviour	repeated
on	smaller	and	smaller	scales,	like	a	nested	set	of	Russian	dolls	that	goes
on	for	ever.	For	obvious	reasons,	the	patterns	within	patterns	are	said	to
be	self-similar.	In	the	midst	of	order,	there	is	chaos;	but	in	the	midst	of
chaos,	there	is	order.	May	realized	that	all	of	this	had	implications	far
outside	the	fields	of	ecology	and	biology,	and	drew	attention	to	his
discoveries	in	a	paper	published	in	Nature,	the	most	widely	read	and
interdisciplinary	scientific	journal,	in	1976.	This	was	just	at	the	time
when	independent	studies	of	various	phenomena	by	different	scientists
were	coming	together	to	create	chaos	theory.



Figure	3.1a	The	Feigenbaum	diagram	exemplifies	the	‘period-doubling’	route	to	chaos.

We’ve	been	using	the	term	‘chaos’	to	describe	this	behaviour,	but	it
was	only	later	called	that	–	indeed,	it	was	while	all	this	was	going	on
that	chaos	got	its	name	and	became	widely	known.	When	Edward
Lorenz	had	made	his	personal	discovery	of	chaos	in	the	early	1960s,	he
was	working	in	the	context	of	meteorology.	Naturally	enough,	he
reported	his	discovery	at	meetings	attended	by	meteorologists,	and
published	in	meteorological	journals	–	the	key	paper,	‘Deterministic
Nonperiodic	Flow’	appeared	in	the	Journal	of	the	Atmospheric	Sciences	in
1963.	But	the	mathematicians,	physicists	and	even	biologists	who	might
have	picked	up	on	the	discovery	didn’t	read	the	meteorological	journals,
and	the	meteorologists	who	did	read	those	journals	were	much	more
interested	in	how	to	find	order	among	the	chaos	(in	the	everyday	sense
of	the	term)	of	the	weather,	than	in	looking	at	how	to	make	chaos	out	of
order.	A	decade	later,	James	Yorke	(1941–)	was	a	mathematician
working	at	an	interdisciplinary	institute,	the	Institute	for	Physical
Science	and	Technology,	set	up	at	the	University	of	Maryland	specifically
to	try	to	break	down	some	of	the	barriers	segregating	scientists	into
different	compartments.	One	of	Yorke’s	colleagues	at	the	University	of
Maryland,	Alan	Faller,	was	working	in	the	Department	of	Meteorology



and	had	read	Lorenz’s	1963	paper.	In	a	conversation	with	Faller,	Yorke

talked	about	his	own	work	on	non-periodicity,	and	Faller	showed	him
the	paper,	then	made	photocopies	which	he	handed	out	around	the
Institute.	Yorke	appreciated	at	once	that	the	paper	not	only	contained	a
deep	truth	that	must	have	many	applications	outside	the	field	of
meteorology,	but	also	that	by	expressing	this	in	terms	of	the	behaviour
of	a	real,	physical	system	it	made	the	underlying	mathematics	more
accessible	to	physicists.	Mathematicians	had	been	playing	with	numbers
in	ways	that	echoed	the	behaviour	of	the	numbers	in	Lorenz’s	simple
computer	program	for	decades	–	but	before	Lorenz	nobody	had	made	a
link	between	such	mathematical	abstractions	and	the	real	world.	Lorenz
himself	did	not	know,	at	the	time,	how	much	seemingly	abstract
mathematical	work	had	been	carried	out	which	could,	with	this	insight,
be	translated	into	physical	terms;	but	Yorke	knew	a	man	who	did.	On	a
visit	to	the	Berkeley	campus	of	the	University	of	California,	he	passed	a
copy	of	the	1963	paper	on	to	Stephen	Smale,	a	topologist	who	had	done
award-winning	work	in	his	specialist	field,	and	was	also	interested	in
dynamic	systems.	Smale	in	turn	made	many	copies	of	the	paper	which
he	spread	through	the	mathematics	community.	The	secret	was	out,	but
it	still	hadn’t	yet	received	its	name.	That	happened	in	1975,	when	Yorke
and	his	colleague	Tien	Yien	Li	published	a	paper	with	the	title	‘Period
Three	Implies	Chaos’.

Figure	3.1b	A	key	feature	of	the	Feigenbaum	diagram	is	that	it	is	self-similar.	A	small	piece	of	the
diagram	blown	up	in	scale	by	the	right	amount	looks	exactly	like	the	original	diagram.

What	Li	and	Yorke	showed	is	that	for	certain	families	of	differential
equations,	if	there	is	just	one	solution	which	has	period	three	then	there



must	also	be	an	infinite	number	of	periodic	solutions,	with	every
possible	period,	and	in	addition	to	that	an	infinite	number	of	non-
periodic	solutions.	This	isn’t	quite	what	we	mean	by	chaos	today,	and
Lorenz	himself	prefers	to	call	what	Li	and	Yorke	discovered	‘limited
chaos’	because	of	the	presence	of	all	the	non-chaotic	periodic	solutions
also	contained	in	the	equations.	It	is	overwhelmingly	more	likely	that
such	a	system	will	be	in	a	periodic	state,	whereas	in	the	situation	that
Lorenz	calls	‘full	chaos’	and	most	scientists	today	just	call	‘chaos’,
although	periodic	solutions	exist	it	is	overwhelmingly	more	likely	that	a
system	will	fall	into	the	chaotic	regime.	Nevertheless,	although	the
terminology	has	evolved	since	1975,	the	Li	and	Yorke	paper	is	generally
regarded	as	the	one	that	introduced	‘chaos’,	albeit	inadvertently,	as	a
scientific	term	with	its	modern	meaning.

So	by	the	second	half	of	the	1970s	there	was	a	word	to	describe	the
kind	of	behaviour	May	had	found	in	his	investigation	of	the	logistic
equation.	But,	fascinating	though	all	this	is,	it	would	be	of	little	interest
to	anyone	except	mathematicians	if	it	only	applied	to	a	simple	logistic
equation	which,	to	be	honest,	is	hardly	a	realistic	representation	of	even
a	single	biological	species.	Within	a	few	years	of	May’s	breakthrough,
however,	in	the	mid-1970s	Mitchell	Feigenbaum,	working	at	the	Los
Alamos	National	Laboratory	in	New	Mexico,	had	shown	that	it	had	far
wider	implications.	Feigenbaum	(1945–)	showed	that	the	period-
doubling	route	to	chaos	is	not	some	special	feature	of	the	logistic
equation,	but	that	it	is	a	product	of	the	iterative	process	by	which	the
system	feeds	back	on	itself	–	whether	the	system	is	an	animal
population,	an	oscillator	in	an	electrical	circuit,	an	oscillating	chemical
reaction,	or	even	(in	principle)	the	business	cycle	of	the	economy.	What



mattered	was	that	the	systems	had	to	be	‘self-referential’.	If	that	were	the
case,	then	they	followed	the	same	route	to	chaos	–	not	approximately,
but	exactly.	Feigenbaum	looked	at	the	way	the	intervals	between	period
doublings	get	shorter	and	shorter	as	B	increases	along	the	route	to	chaos
studied	by	May.	He	found	that	there	is	a	constant	ratio	in	the	size	of	one
step	relative	to	the	next	–	to	three	decimal	places,	the	ratio	is	4.669:1,
whether	we	compare	the	first	step	with	the	second,	the	second	with	the
third,	the	one-hundred-and-fifth	with	the	one-hundred-and-sixth,	and	so
on.	This	pattern	of	behaviour	is	called	a	geometric	convergence,	because
it	takes	you	closer	and	closer	to	some	critical	point	without	ever	quite
getting	there.	Feigenbaum	found	period	doubling,	bifurcation	and	the
same	geometric	convergence	in	all	the	self-referential	systems	he	looked
at.	Not	just	the	same	kind	of	convergence,	but	exactly	the	same
geometric	convergence,	with	the	same	ratio,	4.669:1.	He	had	found	a
universal	truth,	and	received	the	ultimate	accolade	of	having	the
mysterious	number	that	came	out	of	these	calculations,	4.669,	named

after	him.3

Figure	3.2a	Simplified	representation	of	the	kind	of	self-similar	branching	seen	in	the	Feigenbaum
diagram.



There	are	many	other	examples	of	period	doubling	as	a	route	to
chaos,	all	with	interesting	things	happening	just	at	the	transition	from
simplicity	to	chaos.	But	we	don’t	need	to	go	into	all	the	details	here.
Instead,	we	can	begin	to	see	what	is	going	on	if	we	go	back	to	the
dripping	tap	and	the	vortices	in	the	flowing	river.	The	vortices	also	show
the	effect	of	bifurcations.	Looking	at	what	is	going	on	in	much	more
detail	than	Leonardo	could,	we	can	think	of	turbulence	as	resulting	from
an	increasing	number	of	regular	periodic	cycles	added	together	(this	was
first	done	by	the	Russian	physicist	Lev	Landau,	in	the	1940s).	In	a	simple
vortex,	the	motion	corresponds	to	a	loop	around	a	simple	attractor,	the
limit	cycle.	The	next	step	would	be	to	imagine	a	point	in	phase	space
tracing	out	a	circle,	while	the	centre	of	the	circle	traces	out	a	larger
circle.	The	resulting	attractor	would	be	a	torus,	a	shape	like	the	inner
tube	of	a	bicycle	tyre,	or	an	old-fashioned	lifebelt.	Going	regularly	round
the	small	circle	while	the	small	circle	goes	regularly	round	the	large
circle,	the	point	representing	the	state	of	the	system	follows	a	path	like
that	of	a	curved	coiled	spring,	or	the	toy	known	as	a	slinky,	bent	round
in	a	circle,	in	a	regular	and	predictable	way.

Typically,	two	periodic	motions	in	phase	space	interact	with	one	another
and	get	locked	into	a	repeating	rhythm.



Figure	3.2b	Simplied	representation	of	self-similarity.

Mathematically,	it	is	straightforward	to	describe	further	stages	of
increasingly	complex	behaviour	on	the	road	to	turbulence	in	terms	of
‘tori’	in	higher	numbers	of	dimensions.	A	limit	cycle	is	a	one-dimensional
attractor	existing	in	two	dimensions,	the	surface	of	a	torus	is	a	two-
dimensional	attractor	embedded	in	a	three-dimensional	phase	space,	and
the	logical	next	step	would	be	a	pattern	of	behaviour	described	by	a
three-dimensional	attractor	embedded	in	four-dimensional	phase	space.
But	the	real	world	doesn’t	go	any	further	down	this	route.	Turbulence
occurs	at	the	very	next	stage,	with	the	point	in	phase	space	representing
the	state	of	the	system	staying	on	the	two-dimensional	surface	of	the
torus	but	moving	in	a	much	more	complicated	way	around	the	surface	of
the	torus	in	a	path	that	can	never	pass	through	the	same	point	in	phase
space	twice	(for	if	it	did,	the	system	would	be	periodic	and	its	behaviour
would	repeat)	and	therefore	never	crossing	itself.	Typically,	in	an	echo
of	the	original	three-body	problem,	three	or	more	periods	in	phase	space



do	not	get	locked	into	a	repeating	rhythm,	and	their	combined	effect	is

no	more	predictable	than	the	orbit	of	the	small	particle	in	the	restricted
three-body	problem	(although	it	is,	we	cannot	stress	too	strongly	or	too
often,	completely	deterministic).	The	trajectory	through	phase	space	of	the
point	describing	the	system	would	correspond	to	an	infinitely	long	line
wrapped	in	a	complex	way,	without	ever	crossing	itself,	around	a	finite
surface	(there’s	actually	also	an	additional	complication,	which	we	will
deal	with	shortly).	The	Belgian	David	Ruelle	and	his	Dutch	colleague
Floris	Takens,	working	in	Paris,	dubbed	such	an	entity	a	‘strange
attractor’,	in	a	paper	they	published	in	1971.

This	is	where	fractals	come	into	the	story.	Like	chaos,	they	got	their
name,	as	we	shall	see,	in	1975;	but,	also	like	chaos,	they	had	been
around	in	science	for	a	long	time	before	that,	without	their	significance
being	fully	appreciated.	Entities	that	we	would	now	call	fractals	were
discovered,	much	to	their	surprise	(and	even	horror),	by	mathematicians
in	the	late	nineteenth	century.	At	the	time,	they	were	regarded	as
aberrations	–	‘monsters’	that	did	not	fit	into	the	orderly	world	of
mainstream	mathematics.	And	you	can	see	why	by	looking	at	an
example	which	brings	out	their	peculiarities	in	full	force.

In	1890,	Giuseppe	Peano	(1858–1932)	published	a	paper	in	which	he

described	how	to	construct	a	curve	that	completely	fills	a	plane.4	That
doesn’t	sound	too	horrendous,	to	a	non-mathematician.	But	think	about
it.	A	plane	is	a	two-dimensional	entity	–	it	has	length	and	breadth.	A	line
is	a	one-dimensional	entity	–	it	has	length,	but	no	breadth.	Peano
showed	how	a	line	could	be	made	to	twist	and	turn	inside	a	plane	in
such	a	way	that	it	passed	through	every	point	in	the	plane,	without	ever
crossing	itself.	A	one-dimensional	line	completely	filled	a	two-



dimensional	plane!	So	how	could	a	plane	‘really’	be	two-dimensional,	if
every	point	in	the	plane	lay	on	a	single	line?	There’s	more.	If	you	think
of	the	plane	as	a	square,	then	the	Peano	curve	traces	out	the	outlines	of
a	set	of	smaller	squares,	like	tiles,	filling	the	plane;	inside	each	smaller
square,	the	curve	traces	out	a	similar	set	of	‘tiles’;	and	so	on.	The	pattern
is	self-similar,	and	it	goes	on	for	ever.	The	Peano	curve	is	infinitely	long,
but	it	is	contained	within	a	finite	area.	There	is	a	clear	analogy	here	with
the	‘space	filling’	curve	that	is	the	attractor,	wrapped	around	the	torus	in
the	phase	space	that	describes	a	turbulent	system,	although	none	of	that
was	known	in	the	1890s.	The	language	we	need	to	describe	such	entities
was	eventually	developed	by	Benoit	Mandelbrot,	working	at	IBM’s
Thomas	J.	Watson	Research	Center	in	Yorktown	Heights,	New	York,	in
the	1970s.

Mandelbrot,	who	had	been	born	in	Warsaw	in	1924,	had	an	eclectic
background	which	served	him	well	as	the	founder	of	what	was
essentially	a	new	scientific	discipline.	The	family	moved	to	France	in
1936,	where	Benoit	studied	in	Paris	after	the	Liberation	in	1944.	After
spells	at	Caltech	and	the	Institute	for	Advanced	Study	in	Princeton,	he
returned	briefly	to	France	in	1955	before	moving	permanently	to	the
United	States	and	settling	in	Yorktown	Heights	in	1958.	Mandelbrot
realized	that	an	object	like	the	Peano	curve	could	be	described	as	having
an	intermediate	dimension,	in	this	case,	somewhere	between	1	and	2.	A
regular	line	was	still	a	one-dimensional	object,	and	a	plane	was	still	a
two-dimensional	object,	but	just	as	mathematics	had	to	come	to	terms
with	the	idea	that	there	is	an	infinity	of	numbers	between	every	rational
number,	so	it	would	have	to	come	to	terms	with	the	idea	that	there	are
entities	with	intermediate,	non-integer	dimensions.	If	the	dimension	of



such	an	entity	is	not	an	integer,	then	it	must	be	fractional.	In	order	to
have	a	word	to	describe	such	entities,	Mandelbrot	tells	us,	‘I	coined	the
word	fractal	in	1975	from	the	Latin	fractus,	which	describes	a	broken

stone	–	broken	up	and	irregular.’5	You	can	just	as	well,	though,	think	of
it	as	a	contraction	of	the	word	‘fractional’,	which,	of	course,	comes	from
the	same	Latin	root.

Figure	3.3	The	Peano	curve	–	a	line	that	thinks	it	is	a	surface.

There	are	three	other	fractals,	all	of	them	known	for	decades	before
1975	as	mathematical	scary	monsters,	that	it	is	worth	learning	about
before	we	get	on	to	the	relevance	of	all	this	to	chaos.	The	oldest	of	these
(in	the	sense	of	being	the	first	to	be	discovered	by	mathematicians)	is
the	Cantor	set,	named	after	the	German	mathematician	Georg	Cantor

(1845–1918),	who	discovered	it	in	1883.6	The	Peano	curve	is	a	line	that
is	more	than	a	line,	‘trying’	to	be	a	plane;	the	Cantor	set	is	a	line	that	is
less	than	a	line,	‘trying’	to	be	a	point.	It	is	easy	to	describe	how	to
construct	a	Cantor	set.	Take	a	straight	line,	and	rub	out	the	middle	third
of	the	line	(but	be	careful	not	to	rub	out	the	points	exactly	one-third	and
two-thirds	of	the	way	along	the	line).	You	are	left	with	two	lines,	each
one-third	of	the	length	of	the	original,	separated	by	a	gap,	the	same	size



as	each	of	these	two	lines.	Now	carry	on	doing	this	–	iterate	the

procedure	until	all	the	lines	have	been	rubbed	out,	and	you	are	left	with
an	infinite	number	of	points	arranged	in	a	regular	pattern	with	gaps
between	them.	This	is	the	Cantor	set,	a	fractal	with	dimension
intermediate	between	0	(a	point)	and	1	(a	line),	a	kind	of	ghost	of	the
original	line,	like	the	fading	grin	on	the	face	of	the	Cheshire	cat	in	Alice
in	Wonderland.	Simple	though	it	is	(and	rather	dull	visually),	the	Cantor
set	turns	out	to	be	crucially	important	in	chaos,	as	a	summary	of	its	key
properties	highlights.	First,	it	is	produced	by	iteration	(feedback),	which,
as	we	have	already	seen,	is	one	of	the	keys	to	chaos.	Secondly,	it	is	self-
similar.	From	the	second	stage	of	our	iteration	(where	we	have	four	lines
remaining)	onwards,	at	each	step	the	Cantor	set	is	made	up	of	two	exact
copies	of	itself,	scaled	down	in	size	by	a	factor	of	one-third.	And	there	is
something	else	about	the	Cantor	set.	If	we	go	back	to	the	bifurcation
diagram	which	represents	the	period-doubling	route	to	chaos,	right	at
the	point	where	chaos	sets	in	(sometimes	referred	to	as	the	Feigenbaum
point,	the	limit	to	which	the	ever-decreasing	intervals	between
bifurcations	tend),	at	the	last	step	of	the	process	before	chaos	sets	in,	all
the	tips	of	all	the	branches	of	the	bifurcation	tree	form	a	Cantor	set,
hinting	at	(or	rather,	blazing	out	in	neon	lights)	the	deep	relationship
between	fractals	and	chaos.

Figure	3.4	The	Cantor	set.	By	rubbing	out	the	middle	thirds	of	each	line	as	described	in	the	text,	you



are	left	with	a	dust	containing	infinitely	many	points	but	with	a	total	length	of	zero.

The	Cantor	set	also	has	an	important	place	in	the	history	of	fractals
because	it	was	one	of	the	routes	which	led	Benoit	Mandelbrot	into	the
work	that	made	him	famous.	Mandelbrot	was	interested	in	all	kinds	of
time-varying	and	space-varying	phenomena	and	patterns	as	diverse	as
the	way	words	are	distributed	in	text,	the	distribution	of	large	and	small
cities	across	a	country,	and	the	ups	and	downs	of	the	stock	market.	Soon
after	he	became	an	IBM	researcher,	he	tackled	a	problem	that	was	of
great	practical	importance	to	the	company.	Then	as	now,	information
was	carried	from	one	computer	to	another	along	telephone	lines,	and	the
engineers	involved	in	this	work	were	plagued	by	noise	that	occurred	in
these	lines	and	could	scramble	vital	pieces	of	data.	This	didn’t	matter	too
much	for	the	voice	conversations	the	phone	lines	were	originally	built
for	–	if	there	is	a	crackle	on	the	line	during	a	conversation	you	can	speak
a	bit	louder,	or	repeat	what	you	were	saying.	But	it	played	havoc	with

data	transmission	in	those	early	days.7	The	immediate	reaction	of	the
engineers	was	to	increase	the	strength	of	their	signal,	in	effect	shouting
to	drown	out	the	noise;	but	they	still	found	that	from	time	to	time	a	blast
of	noise	would	wipe	out	a	piece	of	the	data	at	random.

The	curious	thing	about	this	noise	was	that	although	it	was	random
and	unpredictable,	it	seemed	to	come	in	bursts.	There	could	be	quite
long	intervals	when	transmissions	went	through	flawlessly,	followed	in
an	unpredictable	way	by	intervals	when	there	were	repeated	bursts	of
noise.	When	Mandelbrot	looked	at	the	problem,	he	found	that	the
pattern	was	self-similar.	In	a	quiet	interval,	there	was	no	noise	at	all.	But
within	any	noisy	interval	there	were	always	shorter	intervals	with	no



noise	at	all,	and	shorter	intervals	with	bursts	of	noise.	Within	those

shorter	noisy	intervals,	the	whole	pattern	repeated	–	as	far	as	he	could
tell,	indefinitely.	And	Mandelbrot	found	that	on	each	scale	the	ratio	of
the	length	of	the	quiet	interval	to	the	length	of	the	noisy	interval	was	the
same.	In	fact,	the	distribution	of	bursts	of	noise	in	the	transmission
system	was	the	same	as	the	distribution	of	the	points	in	the	Cantor	set.
There	were	practical	implications	for	the	IBM	engineers.	The	discovery
meant	that	there	was	no	point	in	wasting	money	boosting	the	signals
even	more	since	the	systems	would	always	be	noisy,	so	efforts	would	be
better	concentrated	on	developing	techniques	to	spot	errors	and	repeat
the	distorted	parts	of	any	message;	it	also	meant	that	people	could	be
taken	off	the	fruitless	task	of	trying	to	find	a	physical	cause	(like	a	tree
branch	scraping	on	the	wires)	for	what	were	essentially	random	errors,
and	put	on	more	productive	work	(including	tracing	sources	of	noise
that	did	not	fit	the	pattern,	and	therefore	probably	did	have	a	physical
cause).	Mandelbrot	had	found	one	of	the	first	recognized	examples	of
chaos	at	work	in	a	piece	of	human	technology,	and	had	linked	it	from
the	outset	with	fractals,	although	neither	chaos	nor	fractals	had	yet	been
named.

While	we	were	working	on	this	book,	a	local	news	story	caught	our
eye,	and	suggested	that	something	similar	to	the	process	that	first	drew
Mandelbrot’s	attention	to	chaos	might	be	going	on	in	a	nearby	village.
The	villagers	were	complaining	that	they	had	been	affected	by	repeated
power	failures	over	the	past	year.	The	electrical	supply	company	had	a
perfectly	rational	explanation	for	each	power	cut	–	one	was	caused	by	a
swan	flying	into	overhead	power	lines,	another	by	high	winds	blowing	a
tree	across	the	lines,	a	third	by	lightning,	and	so	on.	But	the	villagers
remained	convinced	that	there	must	be	a	fault	in	the	system.	Chaos



remained	convinced	that	there	must	be	a	fault	in	the	system.	Chaos
theory	can	now	tell	us	that	such	a	cluster	of	local	disasters	is	bound	to
happen	somewhere	in	the	power	supply	network	from	time	to	time	–	but
it	cannot	tell	us	where,	and	it	cannot	tell	us	when,	so	this	is	small
comfort	to	the	people	affected.

The	links	between	random	processes,	chaos	and	fractals	can	also	be
made	clear	by	looking	at	another	of	the	mathematical	monsters,	this
time	dating	from	the	early	twentieth	century,	a	construction	known	as
the	Sierpinski	gasket,	revealed	to	the	world	of	mathematics	by	the	Polish
mathematician	Waclaw	Sierpinski	(1882–1969)	in	1916.	The
instructions	for	making	a	Sierpinski	gasket	involve	a	simple,	repetitive
iteration.	Take	a	blacked-out	equilateral	triangle	drawn	on	a	piece	of
paper	(or,	these	days,	represented	on	a	computer	screen;	strictly
speaking,	it	doesn’t	have	to	be	an	equilateral	triangle,	but	this	helps	in
visualizing	what	is	going	on).	Now	take	the	mid-points	of	each	side	of
the	triangle	and	join	them	up	to	make	an	upside-down	triangle	inside
the	first	triangle.	Rub	out	this	inner	triangle	to	leave	a	white	upside
down	triangle	surrounded	by	three	right-side-up	black	triangles	filling
the	original	triangle.	You	can	guess	the	next	step	–	repeat	this	process	for
each	of	the	three	smaller	black	triangles,	then	for	each	of	the	nine	even
smaller	black	triangles	produced,	and	keep	going	(in	principle,	for	ever).
What	you	are	left	with	is	the	Sierpinski	gasket,	an	entity	which	is	clearly
self-similar	and	which	is	also	a	fractal,	with	dimension	somewhere
between	1	and	2	(we	will	describe	how	to	measure	fractal	dimensions
shortly).



Figure	3.5	The	Sierpinski	gasket.

But	there	is	another,	equally	easy	way	to	make	the	Sierpinski	gasket,
if	you	have	the	patience.	All	you	have	to	do	is	arm	yourself	with	a
pencil,	mark	three	dots	on	a	piece	of	paper	to	represent	the	corners	of	an
equilateral	triangle,	and	take	an	ordinary,	honest	die	which	you	use	to
choose	the	numbers	1,	2	and	3	at	random.	Since	there	are	six	faces	to	the
die,	you	can	do	this	by	saying	that	4	is	the	same	as	1,	5	is	the	same	as	2,
and	6	is	the	same	as	3.	Label	the	vertices	of	your	triangle	1,	2	and	3.
Now	mark	any	point	on	your	piece	of	paper	as	a	starting	point,	and	roll
the	die.	If	it	comes	up	1	or	4,	mark	a	point	on	the	paper	halfway
between	the	starting	point	and	the	point	marked	1.	If	the	die	comes	up	2
or	5,	make	the	new	mark	halfway	between	the	starting	point	and	the
point	marked	2,	and	if	the	die	comes	up	3	or	6,	make	the	new	mark
halfway	between	the	starting	point	and	the	point	marked	3.	With	this
newly	marked	point	as	the	starting	point,	roll	the	die	and	repeat	–	and
repeat,	and	repeat,	and	repeat.	Very	slowly,	after	the	first	few	points,	the
pattern	of	points	that	builds	up	on	the	piece	of	paper	reveals	the	shape
of	the	Sierpinski	gasket.	A	completely	random,	iterative	process	obeying
a	very	simple	rule	has	built	up	a	fractal	pattern.	The	Sierpinski	gasket	is,
indeed,	the	attractor	for	this	particular	process,	and	the	first	steps	in	the



iteration	are	not	precisely	on	the	gasket	because	they	start	at	a	place

which	is	not	on	the	gasket,	and	then	move	towards	it	as	they	are
attracted	by	it.	They	are	attracted	by	a	fractal,	which	is	what	makes	this
a	‘strange	attractor’,	in	the	language	introduced	by	Ruelle	and	Takens,
fractals	being	distinctly	strange	compared	with	objects	we	encounter	in
everyday	life,	like	triangles	and	elastic	bands.	Apart	from	these	few
initial	points,	though,	wherever	you	start	the	game	from	you	will	end	up
with	the	Sierpinski	gasket.	But	if	you	are	tempted	to	play	this	game	(a
simple	version	of	what	is	sometimes	called	the	chaos	game,	where	many
interesting	patterns	can	be	produced	from	similarly	simple	iterative
rules),	two	words	of	warning.	The	first	is	patience	–	it	will	take	several
hundred	steps	before	you	really	see	anything	like	the	Sierpinski	gasket.
The	second	is	randomness;	don’t	be	tempted	to	use	a	computer,	unless
you	are	a	good	enough	programmer	to	be	sure	that	you	are	using
genuinely	random	numbers.	Unfortunately,	the	random	number
generators	inside	computers	are	not	always	really	random,	although	it	is
always	possible	to	get	round	this	if	you	have	the	necessary	skill.

Variations	on	the	chaos	game,	still	based	on	the	idea	of	marking
points	on	a	piece	of	paper	(or	on	a	computer	screen,	if	you	are	sure	your
numbers	are	random)	in	accordance	with	a	simple	rule	of	this	kind,
repeated	in	a	random	fashion,	can	produce	fractal	images	startlingly	like
the	images	of	living	things,	including	ferns	and	trees.	For	those	who	are
interested,	the	mathematics	involved	can	be	found	in	Chaos	and	Fractals,
by	Heinz-Otto	Peitgen,	Hartmut	Jürgens	and	Dietmar	Saupe.	Nobody	is
saying	that	this	is	precisely	the	way	in	which	living	things	grow	into
complex	forms.	But	the	relevant	point	for	us	is	that	such	seemingly
complicated	systems	can	be	produced,	or	described,	by	the	repeated



application	of	a	very	simple	rule.	The	information	stored	in	the	DNA	in
every	cell	of	a	living	entity	is	often	referred	to	as	containing	a	‘blueprint’
describing	how	that	individual	being	is	constructed.	But	this	is	actually	a
rather	poor	analogy.	A	real	blueprint	would	be	very	complicated	–	a
drawing	representing	in	detail	everything	in	the	living	system	and	how	it
all	joined	together.	A	better	analogy	is	with	the	recipe	for	baking	a	cake,
which	doesn’t	tell	you	what	the	final	cake	will	look	like	(let	alone	the
precise	location	of	every	raisin	in	the	finished	cake)	but	says	‘take	the
following	ingredients,	mix	well	and	bake	for	this	number	of	minutes	at
that	temperature’.	Such	a	recipe	is	like	one	step	in	the	chaos	game.	It	is
hard	to	see	how	even	the	wealth	of	DNA	contained	in	the	single	cell	that
develops	to	become	a	human	being,	or	a	pine	tree,	or	whatever,	can
contain	a	literal	blueprint	for	all	the	complex	structures	involved	in	the
final	adult	form.	But	it	is	much	easier	to	see	how	that	DNA	might
contain	a	few	simple	instructions	along	the	lines	of	‘double	in	size	for	n
steps,	then	divide	in	two,	and	repeat	in	each	branch’.	In	the	chaos	game,
instructions	only	slightly	more	complicated	than	this	make	complex
structures	like	ferns	by	iteration.	If	there	is	an	attractor	for	the	fern
shape,	based	on	that	kind	of	simple	rule,	it	is	no	surprise	that	some
plants	grow	into	ferns,	even	though	they	need	not	be	programmed	to
have	that	shape	any	more	than	a	single	die	is	programmed	to	make	the
Sierpinski	gasket.	It	is	randomness	plus	a	simple	iterative	rule	(or	rules)
that	makes	the	complexity	of	the	world.



Figure	3.6a	Constructing	the	Sierpinski	gasket	using	the	chaos	game	(see	p.	87).	The	first	six	steps	in
the	game.

Figure	3.6b	The	state	of	play	after	100,	500,	1,000	and	10,000	steps.

Figure	3.7	A	variation	on	the	chaos	game	produces	a	fern-like	image.

But	before	we	move	on	to	look	more	closely	at	the	nature	of	our
complex	world,	there	are	still	a	few	things	worth	saying	about	fractals



and	attractors	–	not	least,	since	you	are	bound	to	be	curious,	how	you

measure	a	fractal	dimension.	The	simplest	way	to	get	a	handle	on	this	is
through	the	last	of	the	mathematical	monsters	from	the	late	nineteenth
century	and	early	twentieth	century	that	we	are	going	to	discuss	in
detail,	the	Koch	curve.	Apart	from	its	intrinsic	interest,	the	Koch	curve	is
also	important	to	the	story	because	it	helped	to	fan	Mandelbrot’s	interest
in	fractals	in	the	1960s,	and	because	metaphorically	speaking	it	touches
tangentially	the	life	of	a	man	we	have	already	met,	Lewis	Fry
Richardson.	One	of	the	curious	things	about	the	Koch	curve,	though,	is
that,	although	it	is	indeed	a	curve,	the	only	way	it	can	touch	anything	at
a	tangent	is	metaphorically,	since	it	does	not	have	any	tangents,	and	in
everyday	language	it	is	entirely	made	out	of	corners.

The	curve	was	discovered,	or	invented,	by	the	Swedish
mathematician	Helge	von	Koch	(1870–1924),	who	presented	it	to	the
world	in	a	paper	published	in	1904.	It	is	easy	to	picture	the	way	in
which	the	Koch	curve	is	constructed.	Start	with	a	straight	line,	and
divide	it	into	three	equal	parts.	On	the	middle	third	of	the	line,	construct
an	equilateral	triangle	(this	time,	it	really	must	be	equilateral),	and	then
rub	out	the	base	of	the	triangle.	You	now	have	four	equal	segments	of
line,	a	flat	piece	on	either	side	and	an	inverted	V	in	the	middle,	which
make	up	the	basic	starting	shape	for	generating	the	Koch	curve	(such	a
starting	shape	is	called,	logically	enough,	the	generator).	Now	repeat	this
process	with	each	of	the	four	straight	line	segments	–	divide	into	three,
construct	an	equilateral	triangle	in	the	middle,	rub	out	the	base	of	the
triangle.	And	keep	on	repeating	this	process	in	an	endless	iteration	to
generate	the	Koch	curve,	which	is	entirely	made	up	of	infinitesimally
small	V-shaped	corners.	It	is	also	infinitely	long,	although	the	end	points
of	the	curve	are	the	end	points	of	the	original	straight	line,	and	in



of	the	curve	are	the	end	points	of	the	original	straight	line,	and	in
between	it	extends	only	a	little	way	above	the	original	line.

In	a	slight	variation	on	the	theme,	at	the	generator	stage	you	can	take
three	of	the	generators	(each	the	same	size,	of	course)	and	place	them
along	the	sides	of	an	equilateral	triangle	to	make	a	six-pointed	Star	of
David.	After	a	few	iterations,	the	crinkly	outline	of	the	curve	resembles
that	of	a	snowflake,	so	this	construction	is	sometimes	called	the	Koch
snowflake.	But	as	the	iterations	proceed,	the	wrinkly	curve	also	begins	to
resemble	the	structure	of	a	rugged	coastline,	giving	the	final	limiting
case	of	this	particular	fractal	another	name,	the	Koch	island.	The	Koch
island	has	an	infinitely	long	‘coastline’	even	though	it	is	entirely
contained	within	a	circle	touching	the	tips	of	the	original	six-pointed
Star	of	David	generator.

Figure	3.8	The	Koch	curve	(see	p.	92).	A	ragged	coastline	such	as	that	of	Britain	or	Norway	has
approximately	the	same	fractal	structure	as	this	curve.

So	are	real	coastlines	fractal?	Is	the	resemblance	of	the	Koch	island	to
a	real	island	more	than	just	an	analogy?	It	was	this	sort	of	question	that



really	fired	up	Mandelbrot’s	investigation	of	fractals,	and	according	to

his	own	account8	the	trigger	was	pulled	when	he	read	a	little-known

paper	by	Richardson	in	which	the	sometime	meteorologist	puzzled	over
the	way	the	lengths	of	the	borders	between	Spain	and	Portugal	and
between	Belgium	and	the	Netherlands	were	calculated.	Richardson	had
noticed	a	difference	of	20	per	cent	in	the	lengths	quoted	by	different
reference	sources	for	the	same	borders.	The	difference	arises	because	the
length	you	measure	for	such	a	wiggly	line	depends	on	the	scale	at	which
you	are	measuring	it.	Although	there	might	be	straight	stretches	along
these	borders,	they	mostly	follow	natural	features	of	the	landscape	such
as	rivers	and	mountain	ranges.	Such	a	border	might	be	surveyed	using
theodolites	and	all	the	usual	surveying	paraphernalia,	with	measuring
points	spaced	a	hundred	metres	apart,	measuring	a	series	of	straight
lines	100	metres	long	zigzagging	across	the	countryside.	If	you	were	to
pace	out	the	border	step	by	step,	you	would	follow	some	of	the	wiggles
between	these	points,	and	get	another,	longer	value	for	the	border’s
length;	if	you	pushed	a	little	wheel	with	a	counter	to	record	the	number
of	rotations	along	the	border,	you	would	get	a	still	bigger	length	because
you	would	be	delving	into	little	wiggles	that	you	stepped	over	in	your
pacing;	if	you	took	a	very	long	piece	of	string	and	laid	it	carefully	along
the	border	you	would	get	an	even	higher	value,	and	so	on.	The	point	is
that	the	borders	may	in	principle	be	irregular	on	all	scales	(at	least,
down	to	the	level	of	atoms),	so	the	smaller	the	scale	you	look	at	the
more	wiggles	you	will	see	and	the	longer	the	border	will	seem.



Figure	3.9	The	Koch	snowflake	(see	p.	92).

Mandelbrot	expanded	on	these	ideas	in	a	paper	he	presented	under
the	title	‘How	long	is	the	coast	of	Britain?’	which	appeared	in	the	journal
Science	in	1967.	The	coastline	of	an	island	has	the	advantage	for	this
discussion	of	being	essentially	natural,	without	the	long	straight	lines
that	might	occur	in	man-made	borders,	like	the	borders	between	many
states	of	the	USA.	The	answer	to	Mandelbrot’s	question	–	an	answer
spelled	out	in	the	paper	–	is	that	it	depends	what	scale	you	measure	the
coastline	on,	and	that	if	you	go	to	fine	enough	scales	the	length	you
measure	approaches	infinity	(only	‘approaches’	infinity,	because	things
break	down	when	you	get	to	the	scale	of	atoms).	Although	it	is	not	really
what	Mandelbrot	would	soon	dub	a	fractal,	it	turns	out	that	the	coastline
of	Britain	resembles	a	fractal,	with	a	dimension	intermediate	between	1
and	2.

So	how	do	you	measure	fractal	dimension?	The	Koch	curve	provides
a	clue.	The	Koch	curve	is	self-similar.	If	you	take	any	of	the	four
segments	of	the	Koch	curve	and	increase	it	in	size	by	a	factor	of	three	(a
‘scaling’	of	3),	you	get	a	curve	that	is	identical	to	the	original	Koch



curve.	But	being	self-similar	doesn’t	necessarily	make	something	a

fractal.	An	ordinary	cube	is	self-similar.	If	you	cut	out	a	small	cube	from
inside	the	cube	and	scale	it	by	the	appropriate	factor,	it	will	look	just
like	the	original	cube.	But	this	will	be	true	for	any	small	cube.	Self-
similarity	operates	on	any	scale	for	many	everyday	objects	like	cubes,
but	only	for	certain	specific	scales	for	fractals;	for	the	Koch	curve,	you
have	to	take	exactly	one	quarter	of	the	original	(and	not	any	old	quarter,
at	that)	and	scale	it	by	3	to	reproduce	the	original.	To	make	the
distinction	clear,	we’ll	choose	to	scale	some	everyday	things	by	the	same
factor,	3.	If	you	divide	a	straight	line	into	thirds,	and	scale	one	of	those
thirds	by	a	factor	3,	you	get	a	line	identical	to	the	first	line.	The	scaling
is	the	same	as	the	length	reduction,	so	the	dimension	of	a	line	is	1	–	we
divide	by	3	and	scale	by	3.	If	you	take	a	square,	and	divide	each	of	its
sides	into	thirds,	you	make	a	grid	of	nine	small	squares.	So	you	have	to
take	one-ninth	of	the	original	square	and	then	scale	it	by	a	factor	of	3	to
get	a	square	identical	to	the	first	one.	We	divide	by	9	and	scale	by	3.	The
number	9	is	32	so	the	dimension	of	a	square	is	2.	For	a	cube,	if	you

divide	each	side	up	into	thirds	you	get	a	set	of	27	little	cubes	each	of
which	will	look	just	like	the	original	cube	if	scaled	by	a	factor	of	3.	Since
27	is	33	this	means	that	a	cube	has	dimension	3.	We	divide	by	27	and

scale	by	3.

Now	look	again	at	the	Koch	curve.	This	time,	we	divide	the	length	by

4	and	then	scale	by	a	factor	of	3.	We	know	that	31	is	3,	and	32	is	9,	but

what	power	of	3	corresponds	to	4?	If	3n	=	4,	what	is	n?	The	answer	(to
four	decimal	places)	is	1.2619,	as	you	can	easily	check	on	a	calculator.
So	the	dimension	of	the	Koch	curve	is	1.2619,	between	1	and	2	as	we
expected,	but	more	like	a	line	than	a	plane.	The	same	sort	of	reasoning



can	be	applied	to	calculate	the	dimension	of	other	fractals,	and	even	of
things	that	are	approximately	fractal	–	the	coastline	of	Britain,	for
example,	turns	out	to	have	a	dimension	of	roughly	1.3,	making	it	slightly

less	like	a	line	than	the	Koch	curve	is.9

Fractals	are	fascinating	in	their	own	right,	and	Mandelbrot’s	chief
claim	to	fame	is	his	discovery	of	a	set	that	bears	his	name,	which	has	a
fractal	structure	revealed	by	iterating	a	simple	mathematical	expression.
The	difference,	compared	with	the	sets	and	fractals	that	we	have	been
discussing,	is	that	the	expression	involves	what	mathematicians	call
complex	numbers,	which	are	numbers	involving	the	square	root	of	–1.
The	key	thing	about	complex	numbers	is	that	they	are	in	a	sense	two-
dimensional,	whereas	everyday	numbers	are	one-dimensional.	A	single
everyday	number	is	all	you	need,	for	example,	to	specify	the	position	of
a	point	along	a	line.	A	single	complex	number	is	the	minimum	you	need
to	specify	the	position	of	a	point	on	what	is	called	the	complex	plane	(by
its	distance	from	each	of	two	of	the	edges	of	the	plane).	It	contains	two
pieces	of	information.	The	iteration	that	produces	the	Mandelbrot	set

involves	the	expression	(Z2	+	C),	where	Z	is	a	variable	complex	number
and	C	is	a	fixed	complex	number.	In	the	usual	way,	we	iterate	by
choosing	a	value	of	Z,	feeding	it	into	the	expression,	calculating	the
result	and	using	that	as	the	value	of	Z	for	the	next	iteration.	The	fractal
pattern	emerges	when	the	values	of	Z	are	plotted	on	the	complex	plane.
You	don’t	have	to	know	anything	about	complex	numbers	to	appreciate
that	this	is	a	very	simple	(but	non-linear)	process,	similar	to	the	iteration
of	the	logistic	equation.	Yet	the	fractal	that	results	is	possibly	the	most
complicated	entity	ever	investigated	by	humankind,	and	it	is	not	just
complicated	but	beautiful,	so	that	blown-up	portions	of	the	set	have



achieved	an	iconic	status	as	poster	illustrations,	and	whole	books	have
been	filled	with	them.	But	such	investigations	take	us	in	the	opposite
direction	from	the	one	we	wish	to	follow	in	the	rest	of	this	book	–
inward	into	the	world	of	mathematics	rather	than	outward	into	the
world	of	living	things.	The	only	thing	we	want	to	emphasize	about	the
Mandelbrot	set	is	that,	once	again,	this	extremely	complicated	object	is
indeed	produced	from	a	very	simple	expression	by	iteration.	From	this
perspective,	it	is	one	of	the	simplest	things	ever	investigated	by
humankind	–	but	then,	as	we	shall	see,	from	this	perspective	so	is
everything	else.

The	key	question	we	are	addressing	here	is	how	complexity	arises
from	simplicity.	This,	and	the	link	between	chaos	and	fractals,	is	clearly
seen	if	we	go	back	to	our	old	friend	the	logistic	equation,	and	interpret
its	effects	in	terms	of	topology,	which	introduces	the	additional	layer	of
complexity	that	we	hinted	at	earlier.	What	the	logistic	equation	(and	the
kind	of	similar	iterative	processes	we	have	been	discussing)	does	is	to
transform	one	set	of	numbers	into	another	set	of	numbers.	If	the	original
numbers	are	points	on	a	plane,	or	on	the	surface	of	a	sphere,	or	on	some
other	surface,	they	may	be	changed,	one	by	one,	into	points	somewhere
else	in	the	plane,	or	on	another	plane,	or	some	other	surface.	We	are	all
familiar	with	this	kind	of	process,	although	it	is	so	familiar	that	we
seldom	think	about	what	is	going	on.	It	is	called	mapping.	The	kind	of
map	we	use	to	find	our	way	around	a	town,	or	to	study	geography,
doesn’t	reproduce	every	point	in	the	real	world,	but	essentially	a	street
plan	is	a	faithful	copy	in	miniature	of	the	streets	of	the	town,	just	shrunk
down	in	size	to	fit	on	a	piece	of	paper.	A	globe	can	in	principle	be	used
as	a	faithful	map	of	the	(roughly)	spherical	Earth,	with	no	distortions.



But	a	map	can	also	be	a	faithful	copy	and	have	distortions.	The	map	of
the	London	Underground	is	a	good	example	–	there	are	points
representing	every	station,	and	lines	representing	all	the	train	lines,	and
the	map	preserves	the	essence	of	the	relationship	between	those	points
and	lines,	but	it	has	been	distorted	to	make	it	easier	to	interpret.

To	some	extent,	the	distortions	on	the	Underground	map	are	a	matter
of	choice	–	you	can	also	draw	maps	of	the	London	Underground	that	are
much	more	faithful	copies	of	the	original,	in	terms	of	representing	every
wiggle	in	the	lines.	But	a	map	of	the	world	drawn	on	a	flat	piece	of
paper	must	be	distorted,	because	you	are	trying	to	represent	the	surface
of	a	sphere	on	a	plane.	This	is	why	the	shapes	of	the	continents	on	the
familiar	Mercator	projection	and	the	popular	Peters	projection	(two
different	ways	of	tackling	this	problem)	are	not	exactly	the	same,	and
why	neither	is	exactly	the	same	as	the	shapes	of	the	continents	on	the
face	of	the	Earth	itself.	But	in	each	case	every	single	point	on	the	surface
of	the	Earth	can	be	represented	by	a	single	point	on	the	surface	of	the
map.	Indeed,	the	Mercator	projection	is	also	a	map	of	the	Peters
projection,	and	vice	versa;	neither	is	intrinsically	‘better’	than	the	other.

The	process	described	by	the	logistic	equation	is	also	a	mapping.	We
can	see	this	by	looking	at	how	the	equation	affects	a	set	of	numbers
describing	a	straight	line.	Remember	that	the	equation	changes	a	value
of	x	into	a	new	value	using	the	transformation

x(next)	=	Bx(1	–	x)

and	that	thanks	to	renormalization	we	only	have	to	consider	starting
values	of	x	between	0	and	1.	These	starting	values	can	represent	a



straight	line	–	if	you	like,	think	of	a	metre	stick,	one	unit	(1	metre)	long.
To	keep	things	simple,	we’ll	choose	a	simple	integer	value	of	B	–	say,	3	–
and	look	at	how	the	line	is	transformed	by	the	logistic	equation	–	how	it
is	mapped	on	to	a	different	arrangement	of	points.

We	can	see	what	happens	by	looking	at	the	way	the	mapping	works
at	points	separated	by	one-tenth	of	the	length	of	the	original	line.	The
point	x	=	0,	obviously,	maps	on	to	the	point	0.	For	a	value	of	x	of	0.1,	a
tenth	of	the	way	in	from	one	end	of	the	line,	we	get	a	value	for	x(next)
of	3	×	0.1	×	0.9,	or	0.27.	The	point	x	=	0.1	has	been	mapped	on	to	the
point	x	=	0.27.	Similarly,	the	point	x	=	0.2	maps	on	to	the	point	0.48,
0.3	maps	on	to	0.63,	0.4	maps	on	to	0.72	and	0.5	maps	on	to	0.75.	This
half	of	the	line,	from	0	to	0.5,	has	been	stretched	and	now	covers	a
straight	line	from	0	to	0.75,	demonstrating	another	curious	property	of
infinity:	there	are	an	infinite	number	of	points	in	each	line,	and	a	1:1
correlation	between	the	points	in	the	two	lines,	but	one	is	half	as	long
again	as	the	other.

Between	0.5	and	1,	the	same	thing	happens	in	reverse,	as	you	can
quickly	confirm.	The	point	0.6	maps	on	to	0.72,	0.7	maps	on	to	0.63,	0.8
maps	on	to	0.48	and	0.9	maps	on	to	0.27.	And	since	(1	–	1)	is	0,	the
point	x	=	1	maps	on	to	the	point	0.	This	half	of	the	line	has	not	only
been	stretched,	but	turned	over	and	laid	back	on	top	of	the	mapping	of
the	first	half	of	the	line.	There	has	been	a	topological	transformation	of
the	line,	a	stretching	and	folding,	so	although	the	line	is	now	50	per	cent
longer,	thanks	to	the	folding	it	fits	in	to	75	per	cent	of	the	length	of	the
original	line.	The	link	between	algebra	and	topology	is	as	profound	an

insight	as	the	realization	that	an	algebraic	equation	such	as	y	=	x2	can
be	represented	graphically	by	a	line	on	a	piece	of	paper	or	a	trajectory



through	space	–	in	this	case,	a	parabola.	But	it	is	in	phase	space,
remember,	not	real	space	that	the	topological	transformations	we	are
interested	in	are	going	on.

Figure	3.10	Smale’s	horseshoe,	produced	by	the	Baker	transformation	(see	below).	Repeating	this
simple	process	of	folding	and	stretching	indefinitely	builds	up	a	many-layered	structure,	with	the	layers
spaced	like	the	points	in	the	Cantor	set.

If	you	think	in	physical	terms,	instead	of	abstract	mathematical	lines,
the	stretching	and	folding	process	described	by	the	logistic	equation
produces	something	like	a	horseshoe	shape	from	an	original	cylinder,
and	it	is	sometimes	known	as	the	Horseshoe	transformation,	even
though	the	‘bend’	at	the	end	is	a	180-degree	hairpin,	not	the	gentle,
rounded	curve	of	a	real	horseshoe.	But	why	stop	at	one	Horseshoe
transformation?	The	way	to	make	complex	structures	out	of	simple	rules,
we	know,	is	repetition.	So	iterate	the	whole	process	–	transform	the
‘horseshoe’	in	the	same	way,	then	transform	the	transformed	horseshoe,
and	so	on,	indefinitely.	This	process	is	a	bit	like	the	way	a	baker	kneads
dough,	stretching	it,	folding	it	over	on	itself,	pummelling	it	flat,
stretching	and	folding	again,	repeatedly.	So	it	is	also	known	as	the	Baker
transformation.	Whichever	name	you	prefer,	happily	for	the	study	of
chaos,	by	the	time	people	like	Robert	May	began	their	investigations	of
the	period-doubling	route	to	chaos	in	the	1970s	the	topological
properties	of	the	Horseshoe	transformation	had	already	been



investigated,	simply	because	of	its	intrinsic	topological	interest,	by	the

brilliant	theorist	Stephen	Smale,	who,	as	we	have	seen,	became
acquainted	with	chaos	through	his	contact	with	Robert	Yorke.	We	don’t
need	to	go	into	the	mathematics	–	he	has	done	it	for	us.	But	the	simple
physical	picture	of	what	happens	in	phase	space	when	you	do	carry	out
the	Horseshoe	transformation	indefinitely	is	backed	up	by	the	full	weight
of	the	maths,	and	does	indeed	give	a	true	insight	into	what	is	going	on.

Think	of	the	original	line	as	an	attractor	in	phase	space,	and	try	to
visualize	what	happens	to	it	with	the	repeated	application	of	the
Horseshoe	transformation.	At	each	stage,	the	length	of	the	line	is
stretched,	but	because	it	is	folded	back	on	itself	it	takes	up	less	space
‘horizontally’.	After	the	first	step,	you	have	two	lines	on	top	of	each
other	(but	taking	up	no	vertical	distance,	since	lines	have	no	width),
with	one	bend;	the	next	step	has	four	layers	with	three	bends;	the	next
eight	layers	and	seven	bends,	and	so	on.	The	number	of	layers	doubles
each	time,	and	the	number	of	bends	is	found	by	doubling	the	previous
number	and	adding	1.	You	end	up	with	an	infinitely	wiggly	curve	(but
with	the	wiggles	arranged	in	a	very	specific	way,	bends	within	bends
within	bends	forming	a	self-similar	set),	made	up	of	infinitely	many
layers,	but	taking	up	no	distance	either	horizontally	or	vertically.	Taking
a	cross-section	up	the	stack	of	this	infinitely	layered	structure,	you
would	find	that	the	points	are	distributed	like	the	points	in	the	Cantor
set.	But	where	do	the	points	next	to	each	other	in	these	layers	come
from?	Because	of	the	repeated	stretching	and	folding	process,	two	points
on	the	final	curve	that	started	out	close	together	on	the	original	line	may
end	up	far	apart	in	this	set,	while	two	points	that	started	out	nearly	at
opposite	ends	of	the	original	line	may	end	up	very	close	together.	If	the
state	of	a	system	moves	along	the	original	line	smoothly	in	one



state	of	a	system	moves	along	the	original	line	smoothly	in	one
direction,	passing	through	each	point	in	turn,	it	will	seem	to	be	jumping
about	among	the	points	of	the	Cantor	set	at	random.	This	is	the	topology
associated	with	the	onset	of	chaos	produced	by	period	doubling.

This	infinite	layering,	like	an	infinite	flaky	pastry,	also	occurs	in	the
Lorenz	attractor.	As	shown	on	the	page	(see	page	58),	the	line
representing	the	Lorenz	attractor	in	phase	space	seems	to	cross	itself
many	times	–	indeed,	an	infinite	number	of	times.	But	what	is	really
happening	in	phase	space	is	that	at	every	crossover	the	attractor	is
‘travelling’	in	a	different	layer	of	phase	space,	a	different	plane.	One	way
to	help	visualize	this	is	to	think	of	a	book	with	an	infinite	number	of
infinitesimally	thin	pages,	opened	flat	in	the	middle.	One	lobe	of	the
Lorenz	attractor	is	drawn	on	the	left-hand	page,	and	one	lobe	on	the
right-hand	page	–	there	is	a	loop,	or	series	of	loops,	around	the	relevant
lobe	on	every	page	of	the	book.	But	every	time	the	trajectory	of	the
attractor	in	phase	space	moves	across	the	middle	of	the	book	and	on	to
the	opposite	side,	it	moves	on	to	a	different	page.	There	are	an	infinite
number	of	crossing	places,	but	the	line	representing	the	attractor	never
cuts	itself.

In	both	cases,	the	Horseshoe	attractor	and	the	Lorenz	attractor,	an
infinite	number	of	layers	of	phase	space	are	contained	within	a	finite
volume	of	phase	space.	Both	attractors	are	fractal	–	they	are	strange
attractors.	And	this	is	just	the	beginning.	If	you	do	the	same	kind	of
stretching	and	folding	to	attractors	that	don’t	start	out	as	straight	lines	in
phase	space	–	such	as	an	attractor	wrapped	around	a	torus	in	phase
space	–	you	end	up	with	an	even	more	complicated	pattern	of	fractal
chaos,	but	one	still	based	on	a	very	simple	set	of	rules.	At	last	we	have
all	the	information	we	need	about	how	the	underlying	simplicity	of	the



all	the	information	we	need	about	how	the	underlying	simplicity	of	the
world	can	produce	complex	structures,	and	we	can	begin	to	move
upwards	through	the	layers	of	complexity	to	apply	this	understanding	to
the	emergence	of	life.	There	are	still	several	steps	along	the	way;	but	to
whet	your	appetite,	here	is	a	hint	of	how	all	this	may	be	relevant	not
only	to	life	in	general,	but	to	human	life	in	particular.

Remember	the	way	we	calculated	the	fractal	dimension	of	the	Koch
curve	in	terms	of	the	power,	or	exponent,	that	appears	in	the	scaling

law.	Such	a	relationship	is	called	a	power	law	–	3	to	the	power	of	2	is	32,

3	to	the	power	of	3	is	33,	and	so	on	–	and	we	had	to	raise	3	to	the	power
of	1.2619	in	order	to	get	4,	the	number	of	pieces	making	up	the	basic
unit	of	the	curve.	Something	as	simple	as	the	volume	of	an	object	also
obeys	a	power	law.	If	you	have	a	cube	with	sides	of	length	l,	the	volume

is	proportional	to	l3,	whatever	the	value	of	r3,	if	you	have	a	sphere	of

radius	r,	the	volume	is	proportional	to	r3,	whatever	the	value	of	r.
Volume,	or	size,	obeys	a	power	law	with	exponent	3.	In	the	mid-1980s,
researchers	investigating	the	metabolic	rates	of	animals	of	different	sizes
were	intrigued	to	discover	that	although	these	also	obey	a	power	law,	it
is	not	the	simple	exponent	3	law	that	you	might	expect	from	the	way	the
sizes	of	the	animals	scale.	They	compared	the	metabolic	rate	with	the
body	mass	for	mammals	as	diverse	as	rats,	dogs,	humans	and	horses.	The
mass	of	the	body	of	an	animal	is	proportional	to	its	volume,	and	as	you
would	expect,	the	more	mass	there	is	the	higher	the	metabolic	rate,
because	there	is	more	body	burning	up	its	food	and	releasing	energy.	But
although	the	mass	increases	as	a	power	law	with	exponent	3,	the
metabolic	rate	scales	in	line	with	a	power	law	with	exponent	2.25.	In
this	respect,	the	animals	are	behaving	as	if	their	size	does	not	scale	like	a



three-dimensional	volume,	but	like	something	intermediate	between	a
volume	and	a	two-dimensional	surface	–	specifically,	like	an	extremely
crumpled	up,	fractal	surface.	A	mathematician	(at	least	a	topologist)
would	immediately	interpret	this	power	law	as	suggesting	that	the
objects	involved	were	fractal	surfaces	crumpled	up	within	finite
volumes.

Looking	at	bodies	in	more	detail	we	find	that	there	are	very	many
features	of	living	systems	that	are	like	fractals.	The	way	that	arteries	and
veins	branch,	for	example,	turns	out	to	be	essentially	fractal,	enabling
blood	to	reach	and	return	from	every	part	of	the	body	without	the	veins
and	arteries	taking	up	so	much	room	that	there	is	no	space	for	anything
else.	This	is	particularly	clear	in	the	kidneys,	where	veins	and	arteries
branch	in	an	extremely	complex	intertwining	fashion	to	exchange	fluids.
The	kidney	is	very	much	a	finite,	three-dimensional	object;	yet	the	veins
and	arteries	within	the	kidney	tend	towards	the	infinite	length	of	a	true
fractal.

Of	course,	the	analogy	breaks	down	at	the	extremes.	Systems	within
the	human	kidney	do	not	actually	branch	infinitely	many	times,	just	very
many	times;	and	going	in	the	other	direction,	we	do	not	find	kidneys
embedded	within	superkidneys,	and	so	on	for	ever,	but	that	each	system
is	self-contained.	Nevertheless,	the	similarity	between	many	living
systems	and	fractals	is	more	than	merely	an	analogy,	and	it	explains
also,	for	example,	how	the	two-dimensional	surface	of	the	lungs	can
have	a	large	enough	area	to	allow	carbon	dioxide	and	oxygen	to	be
exchanged	across	the	surface	with	the	rapidity	required	to	keep	you
alive,	even	though	they	are	contained	within	quite	a	small	volume.	Near-
fractal	self-similarity	is	a	pervasive	feature	of	the	bodies	of	living
organisms.	And	as	well	as	doing	the	job	effectively,	remember	that	the



organisms.	And	as	well	as	doing	the	job	effectively,	remember	that	the
amount	of	DNA	required	to	code	for	the	production	of	such	a	system	is
very	simple	indeed,	compared	with	the	amount	of	information	contained
in	a	literal	blueprint	for	a	structure	as	complex	as	the	kidney.	It	is	the
simplicity	of	the	rules	underlying	the	structure	of	fractals	that	allows
living	things	to	be	complicated	enough	for	creatures	able	to	ask
questions	about	the	nature	of	the	world	to	evolve.

What	we	have	seen	is	that	you	can	have	very	simple	systems,	in
which	nothing	interesting	happens,	like	a	tap	dripping	at	a	steady	rate
with	period	one.	And	you	can	have	chaotic	systems,	in	which	there	are
essentially	random	fluctuations,	so	there	is	no	order	and	structure	is
destroyed.	But	in	between	the	two	you	have,	starting	from	the	boring
end	of	the	spectrum,	an	increasing	level	of	complexity,	starting	from	the
dripping	tap	with	period	one	and	getting	more	and	more	interesting
until	suddenly	chaos	sets	in.	So	the	most	complex	and	interesting	things
in	the	Universe	are	happening	right	at	the	end	of	chaos,	just	before	order
is	destroyed.	It	is	here	that	we	find	taps	(or	leaky	gutters)	dripping	with
strange	and	exotic	rhythms,	whirlpools	within	whirlpools	spinning	about
in	wonderful	patterns,	and	the	extraordinary	complexity	of	the	kidney,
or	the	multiply	folded	and	refolded	near-fractal	surface	of	the	cerebral
cortex	of	the	human	brain.	So	far	we	have	looked	at	order,	and	we	have
looked	at	chaos.	It	is	time	now	to	look	at	the	edge	of	chaos,	where
complexity	lives.



4
The	Edge	of	Chaos

In	a	sense,	classical	thermodynamics	pretends	that	time	does	not	exist.
Systems	are	described	in	terms	of	infinitesimally	small	changes	that
would	take	an	infinite	time	to	shift	them	from	one	state	to	another.
Classical	thermodynamics	also	assumes	that	there	is	no	flow	of	energy	–
specifically,	heat	–	through	a	system.	But	as	we	have	already	seen,	in	the
simple	example	of	the	separation	of	hydrogen	gas	from	hydrogen
sulphide	gas	by	thermodiffusion,	interesting	things	immediately	begin	to
happen	when	energy	is	flowing	through	a	system.	No	significant	amount
of	energy	flows	through	a	corpse,	but	a	great	deal	of	energy	flows
through	your	body	–	chemical	energy	from	the	metabolism	of	the	food
you	eat,	powering	your	muscles	and	the	rest	of	your	bodily	activity,	and
ultimately	being	dissipated	as	heat.	Dissipation	of	energy	is	an	essential
feature	of	non-equilibrium	thermodynamics,	giving	us	another	way	of
referring	to	the	flow	of	energy	through	a	system,	as	a	dissipative	process.
These	are	also	referred	to	as	open	systems,	because	(unlike	the
hypothetical	closed	box	of	gas	beloved	by	the	nineteenth-century
thermodynamic	pioneers)	they	are	not	sealed	off	from	the	world	at	large.
It	is	in	closed	systems	that	we	encounter	time	reversibility	and	Poincaré
recurrences;	in	open	systems	we	encounter	irreversibility	and	an	arrow
of	time.



As	we	saw	in	Chapter	2,	classical	thermodynamics	is	based	on	a
contradiction.	The	very	term	‘dynamics’	tells	us	that	it	describes	how
systems	change;	yet	ideas	such	as	entropy	were	derived	from
calculations	involving	systems	in	equilibrium,	where	nothing	changes.
Equilibrium	itself	is	of	no	intrinsic	interest,	because	nothing	happens
there.	But	how	things	move	towards	equilibrium	can	be	very	interesting.
The	nearest	a	living	thing	ever	gets	to	equilibrium	is	when	it	dies.	The
fact	that	something	is	dead	is	nowhere	near	as	interesting	as	how	it	died
–	a	premise	on	which	the	success	of	a	whole	genre	of	detective	novels,
the	murder	mysteries,	is	based.

When	people	began	to	study	dissipative	processes,	it	was	natural	that
they	should	start	by	investigating	systems	close	to	equilibrium,	and
processes	like	thermodiffusion.	If	systems	are	close	to	equilibrium,	they
generally	respond	in	a	linear	fashion	to	changes	in	their	environment	–
change	the	temperature	gradient	in	the	thermodiffusion	process	by	a
small	amount,	for	example,	and	the	system	will	respond	in	a	linear
fashion,	also	changing	by	a	small	amount.	The	groundwork	for	the	study
of	linear	thermodynamics	was	laid	by	the	Norwegian	chemist	Lars
Onsager	(1903-76),	working	at	Brown	University	in	the	early	1930s	(he
moved	on	to	Yale	in	1933).	His	key	contribution,	singled	out	for	special
mention	in	the	citation	for	his	Nobel	Prize	(awarded	in	1968),	was	the
discovery	of	what	are	known	as	the	reciprocal	relations,	which	say	that
there	is	a	symmetry	in	such	systems.	In	the	case	of	thermodiffusion,	for
example,	just	as	a	temperature	gradient	produces	a	gradient	in	the
concentration	of	the	mixture	of	gases,	so,	according	to	Onsager’s	theory,
setting	up	and	maintaining	a	concentration	gradient	must	produce	a
temperature	gradient,	causing	a	flow	of	heat.	This	was	later	confirmed



by	experiments,	and	the	reciprocal	relations	also	became	known	as	the
fourth	law	of	thermodynamics.

Onsager	had	given	chemists	a	set	of	tools	which	they	could	use	to
begin	the	investigation	of	irreversible	phenomena	in	dissipative	systems,
at	least	in	systems	where	linear	rules	applied	(the	‘linear	regime’).	The
person	who	made	the	most	effective	use	of	this	tool	kit	was	Ilya
Prigogine,	born	in	Moscow	in	1917,	who	emigrated	with	his	family	to
Belgium	when	he	was	twelve,	and	by	1945	was	working	at	the
University	of	Brussels.	It	was	Prigogine	who	showed,	as	we	mentioned	in
Chapter	1,	that	a	dissipative	system	in	the	linear	regime	settles	down	not
into	the	state	of	death	corresponding	to	maximum	entropy	(as	it	would
be	in	equilibrium),	but	into	a	state	where	entropy	is	being	produced	as
slowly	as	possible,	and	the	dissipative	activity	is	ticking	over	at	a
minimum	rate.	This	is	the	situation	in	thermodiffusion	when	the
gradient	of	the	concentration	of	gases	has	stabilized	for	a	particular
temperature	gradient,	but	Prigogine	showed	that	it	applies	in	general	for
systems	described	by	linear	thermodynamics.	Things	exist	in	a	steady
state	in	the	linear	regime;	a	human	being,	for	example,	can	maintain	his
or	her	integrity	for	many	years	using	the	flow	of	energy	(and	food)
through	their	body,	although	in	this	case	the	steady	state	eventually
breaks	down,	for	reasons	which	are	still	not	understood.	But	the	steady
state	of	a	human	adult	is	strikingly	different	from	the	dramatic	changes
that	occur	when	a	new	human	being	develops	from	the	single	cell	of	a
fertilized	egg,	which	is	clearly	a	non-linear	process.	More	of	this	shortly.

Over	the	following	two	decades,	the	work	of	Prigogine	and	his
colleagues	in	Brussels	(who	became	known	as	the	‘Brussels	School’)
focused	on	the	attempt	to	provide	a	mathematical	description	of
thermodynamics	for	systems	far	from	equilibrium,	in	the	non-linear



thermodynamics	for	systems	far	from	equilibrium,	in	the	non-linear
regime	where	small	changes	in	the	external	environment	can	produce
large	changes	in	the	system.	This	should	perhaps	best	be	regarded,	even
today,	as	work	in	progress;	it	is	far	from	being	a	complete	theory.
Happily,	we	won’t	need	to	go	into	the	details,	or	to	get	embroiled	in	the
controversies	surrounding	this	work,	since	the	important	and	widely
accepted	aspects	can	be	understood	in	terms	of	the	behaviour	of	simple
physical	and	chemical	systems.	But	there	is	one	key	point	to	take	on
board	–	such	systems	are	described	by	non-linear	equations	in	situations
where	feedback	is	important.

Along	the	way,	Prigogine	has	also	developed	his	own	ideas	about	the
nature	of	time,	and	the	relationship	between	thermodynamics	and	the
arrow	of	time;	it	is	for	these	ideas	that	he	is	probably	best	known	outside
professional	scientific	circles,	and	that	is	the	only	reason	that	we
mention	them.	The	puzzle	he	sets	out	to	solve	in	this	work	is	how	order
–	things	like	us	–	can	have	arisen	out	of	chaos	–	not	deterministic	chaos,
but	essentially	what	the	Ancient	Greeks	meant	by	chaos,	the	smooth
distribution	of	gases	that	existed	when	the	Universe	was	young.	But	we
shall	not	go	into	this	aspect	of	his	work,	because	it	seems	to	most
physicists	to	be	a	blind	alley,	since	there	is	a	natural	way	to	explain	why
there	is	an	arrow	of	time	in	the	Universe,	and	in	particular,	as	we	shall
now	explain,	how	ordered	systems	such	as	ourselves	can	have	arisen
from	the	almost	uniform	state	of	disorder	that	emerged	from	the	Big
Bang.

The	best	place	to	begin	to	develop	an	understanding	of	the
interesting	things	that	can	happen	in	open	systems	far	from	equilibrium,
in	the	non-linear	regime,	is	with	a	phenomenon	first	described	by	the



Frenchman	Henri	Bénard	in	1900.	Because	it	was	later	investigated	by
the	English	physicist	Lord	Rayleigh,	it	is	variously	known	as	the	Bénard
instability	or	as	the	Rayleigh-Bénard	instability.	The	most	effective	way
to	see	what	is	going	on	is	to	heat	a	flat	pan	containing	a	shallow	layer	of
silicone	oil	carefully	from	underneath,	under	controlled	conditions	in	the
lab.	The	oil	layer	has	to	be	only	a	millimetre	or	so	deep,	and	the	heating
has	to	be	uniform	across	the	flat	bottom	of	the	container.	It	can	be	done
using	a	saucepan	on	an	ordinary	kitchen	stove,	although	we	would	not
recommend	anyone	to	try	heating	thin	layers	of	oil	in	this	way;
something	similar	can	sometimes	be	seen	going	on	in	a	pot	of	thick	soup
as	it	is	slowly	brought	to	the	boil.	But	the	whole	point	of	the	experiment
we	are	about	to	describe	is	that	we	don’t	want	to	heat	the	oil	so	much
that	it	boils	in	a	chaotic	and	messy	fashion.	We	are	interested	in	what
happens	just	before	the	onset	of	chaos.	Since	the	oil	itself	is	clear,	to
make	what	is	going	on	more	easy	to	see	it	is	usually	sprinkled	with
aluminium	dust	(not	something	we	recommend	with	the	soup).

What	goes	on,	of	course,	is	convection.	The	hot	fluid	at	the	bottom	of
the	layer	expands,	becomes	less	dense,	and	tries	to	rise	up	through	the
colder,	denser	fluid	above.	If	the	heating	isn’t	uniform,	this	poses	no
puzzle.	The	fluid	simply	rises	where	it	is	hottest,	subsides	somewhere
else,	and	flows	back	to	the	hot	spot	to	make	a	circulating	convection
cell.	But	in	the	uniformly	heated	fluid,	there	is	no	special	place	where
this	can	begin	to	happen.	There	is	a	uniform	symmetry	across	the	bottom
of	the	fluid,	and	it	all	‘wants’	to	rise	at	once.	At	first,	nothing	at	all
happens.	Then,	as	the	temperature	is	gradually	increased	underneath
while	kept	cool	on	the	top	(so	that	the	temperature	gradient	gets
steeper),	at	a	critical	point	the	symmetry	is	broken	and	the	uniform
surface	of	the	fluid	is	suddenly	broken	up	into	a	pattern	of	tiny



surface	of	the	fluid	is	suddenly	broken	up	into	a	pattern	of	tiny
hexagonal	convection	cells.	The	point	at	which	this	happens	depends	on
the	temperature	difference	between	the	top	and	bottom	of	the	fluid	–	the
temperature	gradient	–	and	the	cells	that	form	in	this	way	are	about	as
big	across	as	the	oil	is	deep.	In	each	cell,	warm	fluid	rises	in	the	centre,
moves	to	the	edges,	and	descends	at	the	boundary	with	the	neighbouring
cell.	Because	the	surface	of	the	fluid	is	open	to	the	air,	surface	tension
effects	are	important,	and	these	encourage	outward	movement	of	the
fluid	at	the	surface,	pulling	it	away	from	the	centre	of	each	cell	and
producing	a	dimpled	effect	with	the	middle	of	the	cell	lower	than	the
edges,	even	though	fluid	is	rising	here.	The	situation	studied	by	Rayleigh
was	slightly	different,	with	a	thin	layer	of	fluid	trapped	between	two
plates,	a	warm	one	underneath	and	a	cold	one	on	top.	This	makes	both
the	physics	and	the	mathematics	much	simpler,	since	surface	tension
doesn’t	have	to	be	taken	into	account,	and	the	pattern	of	behaviour	that
is	revealed	neatly	links	the	Rayleigh-Bénard	instability	with	the	onset	of
deterministic	chaos.

In	this	simplified	version	of	Bénard	convection,	several	steps	on	the
road	to	chaos	can	be	seen.	As	convection	begins,	it	does	so	in	the	form	of
long	sausages,	so	that	the	surface	of	the	fluid	takes	on	a	stripy
appearance.	These	sausages	have	a	roughly	square	cross-section,	and	in
neighbouring	rolls	the	convection	goes	respectively	clockwise	or
anticlockwise,	as	it	must	do	or	the	convection	would	not	work	smoothly.
But	there	is	no	way	to	tell	in	advance	whether	any	particular	point	in
the	fluid	will	become	part	of	a	clockwise	convective	roll	or	an
anticlockwise	convective	roll.	The	exact	arrangement	is	determined	at
random.	There	is	a	bifurcation,	in	which	the	system	has	gone	from	a



single	state	to	a	pair	of	states.	As	the	temperature	gradient	increases,1	at
another	critical	point	the	pattern	abruptly	changes	into	what	is	called	a
bimodal	form,	in	which	there	are	two	sets	of	convective	rolls	operating
simultaneously	at	right	angles	to	each	other.	This	produces	a	pattern	of
roughly	square	convective	cells	as	seen	from	above,	like	a	check	shirt.
The	number	of	possible	states	for	the	components	of	the	fluid	has
doubled	again,	from	2	to	4.	This	is	another	example	of	bifurcation	at
work,	a	variation	on	the	theme	of	the	period-doubling	route	to	chaos
(although	none	of	that	was	known	to	Rayleigh,	of	course),	and	if	the
temperature	gradient	(or	Rayleigh	Number)	is	increased	far	enough,	you
end	up	with	a	turbulent	form	of	convection	in	which	short-lived	patterns
appear,	break	up	and	re-form	endlessly.	But	the	most	interesting	stable
patterns	appear	right	at	the	edge	of	chaos,	and	for	a	thin	layer	of	oil
heated	in	an	open	pan,	thanks	to	surface	tension	the	specific	interesting
pattern	that	appears	is	a	honeycomb	arrangement	of	hexagons.	This	is
happening	far	from	equilibrium,	thanks	to	energy	flowing	through	an
open	system	and	being	dissipated.	This	is	the	secret	of	the	existence	of
order	in	the	Universe,	and	specifically	the	secret	of	life.	Whenever	you
are	confronted	by	the	existence	of	order,	and	especially	by	the	existence
of	life,	and	you	are	wondering	how	the	world	got	to	be	like	that,	you	can
always	say	to	yourself	‘Remember	the	hexagonal	cells	of	the	Bénard
convection?	It’s	the	Isame	thing.’

A	system	can	only	be	held	in	an	interesting	state	away	from
equilibrium	if	it	is	dissipative	and	open	to	the	environment,	so	there	has
to	be	an	outside	source	of	energy.	On	Earth,	that	energy	comes,
ultimately,	from	the	Sun.	And	it	is	understanding	why	the	Sun	shines
that	makes	it	clear	why	order	has	arisen	out	of	chaos	and	how	the
Universe	came	to	have	an	arrow	of	time.



Universe	came	to	have	an	arrow	of	time.

Figure	4.1	In	the	version	of	Bénard	convection	studied	by	Rayleigh,	rolls	of	convection	with	a	roughly
square	cross-section	(like	a	squashed	Swiss	roll)	develop.

It’s	all	thanks	to	gravity.	Gravity	has	a	very	curious	property	–	the
gravitational	energy	of	any	object	that	has	mass	is	negative.	It	is	literally
less	than	zero,	and	the	more	compact	the	object	is	the	more	negative	its
gravitational	energy	is.	As	a	bald	statement	of	fact,	this	may	be	hard	to
accept.	But	it	is	easy	to	understand	what	is	going	on	by	looking	at
gravity	in	two	stages.	First,	the	gravitational	force	between	two	objects
diminishes	as	they	get	further	apart.	It	happens	that	it	diminishes	in	line
with	an	inverse	square	law,	as	Newton	proved.	The	amount	of
gravitational	energy	stored	in	a	collection	of	objects	(be	they	atoms,	or
stars,	or	lumps	of	concrete,	or	paintings	by	Van	Gogh)	depends	on	the
force	between	them.	This	isn’t	just	true	of	gravity	–	if	you	stretch	a	piece
of	elastic,	you	need	to	pull	harder	and	harder	to	stretch	it	more	and
more,	and	the	energy	stored	in	the	elastic	is	related	to	how	hard	you	are
pulling.	But	to	‘stretch’	the	distance	between	two	(or	more)	gravitating
objects	you	need	to	pull	less	and	less	as	they	get	further	apart.	This	is
why	it	takes	a	huge	booster	rocket	to	put	a	satellite	in	orbit	around	the
Earth,	but	once	it	is	in	orbit	only	a	small	rocket	is	needed	to	send	it	to
the	Moon,	or	Mars.	If	the	objects	were	infinitely	far	apart,	the	total
energy	stored	by	the	gravitational	field	linking	them	would	be	zero	–
essentially	because	the	force	is	proportional	to	1	divided	by	infinity



essentially	because	the	force	is	proportional	to	1	divided	by	infinity
squared.

Now	imagine	a	collection	of	particles	(atoms,	or	house	bricks,	or
whatever)	spread	out	infinitely	far	apart	and	given	a	tiny	nudge	so	they
start	to	move	together	under	the	influence	of	gravity.	As	they	do	so,	each
of	the	particles	gains	kinetic	energy,	and	moves	faster	and	faster	as	it
falls.	This	energy	comes	from	the	gravitational	field,	in	just	the	same
way	that	if	you	tie	the	ends	of	a	piece	of	elastic	to	two	pebbles,	pull
them	apart	and	then	let	go,	the	pebbles	will	rush	together	as	the	energy
stored	in	the	elastic	is	converted	into	energy	of	motion	(kinetic	energy).
Similarly,	the	kinetic	energy	of	the	particles	falling	together	has	come
from	the	gravitational	field;	but	the	gravitational	field	started	out	with
zero	energy.	So	now	it	has	less	than	zero	–	negative	energy.	By	the	time
the	particles	come	together	to	make	a	star,	the	gravitational	field
associated	with	that	star	has	a	lot	of	negative	energy.	How	much?	You
may	find	the	answer	surprising,	but	if	so	you	are	in	very	good	company
indeed.

I	have	told	this	anecdote	before,2	but	there	is	no	better	way	to
illustrate	the	point,	and	it	would	be	foolish	to	assume	that	everyone
reading	this	has	already	read	my	earlier	books.	It	dates	back	to	the
1940s,	when	physicists	were	already	aware	of	what	might	be	called	the
negativity	of	gravity,	but	when	most	of	them	were	mainly	occupied	with
war	work	–	not	least,	in	the	US,	the	Manhattan	Project.	One	physicist
based	in	America,	who	wasn’t	allowed	to	work	on	the	most	secret
projects	because	he	was	a	Russian	by	birth,	was	George	Gamow	(1904–
68),	an	ebullient	character	with	a	wide	range	of	interests	who,	among
other	things,	developed	the	first	model	of	the	Big	Bang	origin	of	the



Universe.	His	contribution	to	the	war	effort	was	as	a	consultant	to	the

Bureau	of	Ordnance	in	the	US	Navy	Department	at	Washington,	DC,	and
one	of	his	duties	was	to	travel	up	to	Princeton	every	fortnight	with	a
briefcase	of	papers	for	Albert	Einstein.	There	was	nothing	very	secret
about	the	papers	–	they	described	ideas	for	inventions	that	might	help	to
win	the	war,	sent	in	to	the	Navy	by	well-meaning	but	usually	misguided
citizens,	and	the	Navy	wanted	Einstein’s	advice	on	whether	any	of	them
might	be	worth	pursuing.	The	papers	included	such	ideas	as	the
suggestion	that	the	Atlantic	Ocean	might	be	frozen	to	prevent
submarines	operating,	so	Einstein’s	skill	at	sorting	wheat	from	chaff	was
not	unduly	tested,	although	as	a	former	Patent	Officer	in	Switzerland	he
was	rather	good	at	spotting	the	flaws	in	more	subtly	unworkable
proposals.

One	day,	while	walking	through	Princeton	with	Einstein	from	his
home	to	the	Institute	for	Advanced	Study,	Gamow	casually	mentioned
an	idea	which	had	been	tossed	out	some	time	before	by	one	of	his
colleagues,	the	quantum	physicist	Pascual	Jordan.	It	was	just	a	wild	idea
Jordan	had	come	up	with,	the	sort	of	thing	to	enliven	a	coffee-time
discussion,	or	a	walk	through	Princeton.	Jordan	had	calculated	that	for
any	material	object,	if	the	mass	were	concentrated	at	a	point,	then	the

negative	energy	of	the	associated	gravitational	field	would	be	–mc2	and
would	therefore	exactly	cancel	out	the	positive	mass-energy	of	the	star.
In	other	words,	as	Gamow	put	it	to	Einstein,	a	star	might	be	created	out

of	nothing	at	all.	‘Einstein	stopped	in	his	tracks,’	Gamow	tells	us,3	‘and,
since	we	were	crossing	a	street,	several	cars	had	to	stop	to	avoid	running
us	down.’



It’s	worth	emphasizing	that	this	is	no	mere	analogy,	or	a	result	of	the
way	we	choose	to	measure	things	like	energy.	It	is	a	fundamental	truth
about	the	way	the	Universe	works	that	gravitational	fields	have	negative
energy,	and	that	for	matter	concentrated	at	a	point	this	negative	energy
exactly	cancels	out	the	mass-energy	of	the	matter.	The	idea	that	stopped
Einstein	in	his	tracks	while	crossing	a	road	made	little	impact	at	the
time,	but	forty	years	later	it	became	a	cornerstone	of	the	idea	that	the
entire	Universe	could	have	appeared	in	this	way	out	of	nothing	at	all,	as
a	bubble	of	mass-energy	with	an	associated	gravitational	field	carrying
an	equal	and	opposite	amount	of	energy,	so	that	the	total	energy	of	the
Universe	is	zero,	and	with	the	tiny	bubble	getting	blown	up	into	what
became	the	Universe	we	see	around	us	now	by	a	process	called	inflation.
All	this	is	discussed	in	my	book	In	Search	of	the	Big	Bang,	but	the	only
point	that	matters	here	is	that	we	know	that	the	Universe	started	out
from	the	Big	Bang	in	a	very	uniform	state.	The	details	of	what	went	on
in	the	Big	Bang	are	still	a	matter	for	debate,	but	direct	observations	of
the	Universe	tell	us	what	it	was	like	very	shortly	after	the	beginning.

The	most	important	fact	about	the	Universe	today	is	that	it	is
expanding.	All	the	stars	we	see	in	the	night	sky	are	part	of	a	disc-shaped
system,	a	galaxy	called	the	Milky	Way,	which	contains	hundreds	of
billions	of	stars.	This	is	just	one	among	hundreds	of	billions	of	galaxies,
and	galaxies	are	grouped	together	in	clusters	(held	together	by	gravity)
which	move	apart	from	one	another	as	the	Universe	expands.	The
expansion	is	caused	by	space	itself	stretching	between	the	clusters	of
galaxies,	not	by	the	clusters	moving	through	space,	and	is	explained	in
complete	detail	by	Einstein’s	general	theory	of	relativity	(indeed,	it	was
predicted	by	the	theory).	If	things	are	getting	further	apart	now,	then



obviously	they	were	closer	together	in	the	past,	and	if	we	go	back	far
enough	into	the	past,	everything	was	on	top	of	everything	else	in	a
single	lump,	the	Big	Bang.	By	measuring	the	present	expansion	rate	of
the	Universe	and	using	the	general	theory	of	relativity	we	can	pin	down
the	time	that	has	elapsed	since	the	Big	Bang,	to	around	fourteen	billion
years.

One	of	the	great	things	about	astronomy	is	that	because	light	takes	a
finite	time	to	travel	through	space,	we	see	things	far	away	as	they	were
long	ago.	A	galaxy	ten	million	light	years	away,	for	example,	is	seen	by
light	that	left	it	ten	million	years	ago.	And	if	you	set	‘the	beginning’	as
time	zero	and	work	forwards,	the	furthest	back	in	time	we	can	‘see’	with
our	detectors	is	to	an	epoch	when	the	Universe	was	about	300,000	years
old,	and	consisted	of	a	very	nearly	uniform	sea	of	hot	gas	(strictly
speaking,	a	plasma),	at	about	the	same	temperature	as	the	surface	of	the
Sun	today	–	roughly	6,000	°C.

The	radiation	from	that	hot	fireball	has	cooled	as	it	has	aged	and	the
Universe	has	expanded	(just	as	hot	gas	in	a	closed	box	cools	if	the	box
expands),	and	is	detected	today	as	a	faint	hiss	of	radio	noise,	in	the
microwave	part	of	the	electromagnetic	spectrum,	with	a	temperature	of
just	under	minus	270	°C	(or	2.7	degrees	above	the	absolute	zero	of
temperature).	Very	slight	variations	in	the	temperature	of	this	‘cosmic
microwave	background	radiation’	coming	from	different	parts	of	the	sky
tell	us	that	the	hot	gas	from	which	the	galaxies	and	stars	were	formed
was	then	very	nearly,	but	not	quite,	uniformly	distributed	through	space.
In	some	places,	the	gas	was	a	little	more	dense	than	in	other	places.	The
denser	regions	would	then	have	attracted	more	material	to	themselves
through	gravity,	increasing	the	irregularity	of	the	Universe	and



eventually	leading	to	the	situation	we	see	today,	with	matter
concentrated	in	galaxies	of	bright	stars	and	with	a	lot	of	dark	space	in
between	them.

This	is	a	crucially	different	insight	from	the	one	we	gain	by	studying
a	box	of	gas	here	on	Earth.	Where	the	effects	of	gravity	can	be	ignored
(that	is,	the	effects	of	the	gravitational	forces	of	the	particles	in	the	box
acting	on	each	other	can	be	ignored),	the	state	of	maximum	entropy	for
a	box	of	gas	is	with	the	gas	spread	uniformly	through	the	box	at	a
uniform	temperature.	But	when	the	gravitational	forces	between	the
individual	particles	that	make	up	the	gas	cannot	be	ignored,	as	is	the
case	for	large	clouds	of	gas	and	dust	in	space,	gravity	can	pull	things
together	in	clumps,	making	more	order	and	at	the	same	time	reducing	the
entropy.	As	Paul	Davies	has	put	it,	‘gravitationally	induced	instability	is

a	source	of	information’.4	More	information	implies	less	entropy,	so	you
can	also	regard	this	as	implying	that	as	the	information	‘comes	out’	of
the	gravitational	field	in	a	collapsing	cloud	of	gas,	the	gravitational	field
is	swallowing	entropy,	to	go	with	its	negative	energy.	It	is	the	negative
energy	of	the	gravitational	field	that	makes	it	possible	for	it	to	swallow
up	entropy	in	this	way,	explaining	why	the	Universe	is	not	in
thermodynamic	equilibrium	today.

But	let’s	leave	the	big	picture	of	the	Universe	at	large	and	focus	back
on	the	emergence	of	life	on	Earth.	What	matters	is	that	gravity	has	been
responsible	for	a	kind	of	domino	effect,	not	on	a	small	scale	but	more
like	the	giant	arrays	of	dominoes	sometimes	toppled	to	break	records	or
raise	money	for	charity.	In	a	step	by	step	process	it	has	created
increasing	amounts	of	organization	in	the	Universe,	right	down	(or	up)
to	the	level	of	beings	intelligent	enough	to	speculate	about	how	it	all



happened.	Without	going	into	details	of	how	stars	work,5	we	can	see
that	stars	only	exist	because	clumps	of	gas	have	been	drawn	together	by
gravity	and	got	hot	enough	inside	(thanks	to	the	kinetic	energy	gained
by	their	constituent	particles	from	the	gravitational	field)	for	nuclear
fusion	reactions	to	take	place.	This	has	led	to	a	situation	in	which	the
star	and	its	surroundings	are	not	in	thermodynamic	equilibrium.	Instead,
we	have	a	hot	star	sitting	in	cold	space,	so	that	energy	pours	out	of	the
star	in	an	attempt	to	equalize	the	temperature	inside	and	out.	The
thermodynamic	arrow	of	time	points	in	the	direction	where	the	future
corresponds	to	energy	flowing	out	of	the	star;	and	it	is	no	coincidence
that	the	thermodynamic	future	is	also	the	direction	of	time	away	from
the	Big	Bang,	because	of	the	role	of	gravity	in	all	this.	Ultimately,	it	is
gravity	that	tells	the	arrow	of	time	which	way	to	point.

A	planet	like	the	Earth	is	bathed	in	the	flow	of	energy	from	a	star,
which	makes	the	whole	surface	of	the	planet	an	open,	dissipative	system.
All	life	on	the	surface	of	the	Earth	makes	use	of	this	energy	to	maintain

itself	far	from	equilibrium,	on	the	edge	of	chaos.6	Plants	get	their	energy
directly	from	sunlight	through	photosynthesis;	grazers	get	their	energy
from	plants;	carnivores	get	their	energy	from	other	animals.	But	it	is	all
originally	from	the	Sun,	and	it	is	all,	originally,	thanks	to	gravity.	But
the	way	in	which	systems	organize	themselves,	using	this	flow	of	energy,
into	what	seem	to	be	complex	forms,	is	really	quite	simple.	We	can	see
this	clearly	by	following	the	lead	of	the	brilliant	mathematician	Alan
Turing	(1912–54),	who	had	the	chutzpah	to	attempt	to	explain,	more
than	half	a	century	ago,	what	happens	in	the	most	complicated	process
we	know	of,	the	development	of	an	embryo	from	a	single	living	cell.
Turing	was	way	ahead	of	his	time,	and	the	importance	of	his	work	in



this	field	was	not	recognized	until	long	after	his	death;	but	with
hindsight	it	is	the	logical	place	to	begin	the	next	stage	of	our	story.

Turing,	who	was	born	in	Paddington,	London,	on	23	June	1912,	is
best	known	as	a	cryptographer,	the	leading	member	of	the	team	at
Bletchley	Park	in	Buckinghamshire,	which	cracked	the	German	codes
(including	the	famous	Enigma	code)	during	the	Second	World	War.	By
then	he	was	deeply	interested	in	the	possibility	of	creating	an	artificial
intelligence,	a	‘universal	computer’	(today	sometimes	referred	to	as	a
Turing	machine)	that	could	solve	any	problem.	It	was	through	his
interest	in	how	human	intelligence	developed	that	he	started	thinking
about	embryonic	development.	He	would	certainly	have	achieved	even
more	but	for	the	fact	that	he	was	harassed	by	the	authorities	for	being	a
practising	homosexual	(then	still	illegal	in	Britain)	and	killed	himself	by
eating	an	apple	he	had	dipped	in	cyanide	on	7	June	1954,	a	couple	of
weeks	short	of	his	forty-second	birthday.	Turing	had	graduated	from
King’s	College,	Cambridge,	in	1934,	and	worked	there	for	two	years
before	taking	his	PhD	at	Princeton,	returning	to	King’s	in	1938.	In	1936
he	wrote	a	paper,	‘On	Computable	Numbers’,	which	introduced	the	idea
of	the	Turing	machine.	At	the	time	this	was	purely	an	imaginary	device,
a	‘thought	experiment’	designed	to	demonstrate	the	logical	structure	of	a
hypothetical	universal	computer,	but	the	principles	that	Turing	spelled
out	in	that	paper	form	the	basis	of	all	modern	computers,	as	well	as
providing	insight	into	the	world	of	self-organizing	complex	systems.

Turing’s	imaginary	machine	was	supplied	with	a	long	paper	tape	(in
principle,	infinitely	long),	divided	into	squares	in	which	there	were
symbols	or	numbers	which	could	be	read,	and,	if	appropriate,	erased	and
replaced	with	another	symbol.	Turing	was	thinking	of	a	paper	tape,



written	on	in	pencil,	which	could	be	erased	and	rewritten	as	required.
Today,	the	image	conjured	up	is	of	a	magnetic	tape,	like	the	tape	in	an
audio	cassette,	or	even	the	hard	disk	of	a	computer,	or	its	solid-state
read/write	random	access	memory	(RAM).	They	are	all	logically
equivalent	to	one	another	for	this	purpose.	Reading	the	number	in	one
square	would	tell	the	machine	whether	to	move	forwards	or	back	along
the	tape	(through	the	memory),	how	to	calculate	a	new	number	from	the
information	on	the	tape,	and	when	to	rewrite	the	contents	of	a	square.
For	example,	the	symbol	in	one	square	might	instruct	the	machine	to
add	the	numbers	in	the	next	two	squares	and	write	the	answer	in	the
second	of	those	two	squares.	In	this	way,	if	the	instructions	on	the	tape
were	specific	enough,	the	machine	could	calculate	anything.	Starting	at
one	end	of	the	tape,	or	at	some	specified	square,	the	machine	would
plod	its	way	along,	sometimes	going	backwards	and	forwards	over	the
same	stretch	of	tape,	writing	and	rewriting	symbols	in	the	squares,
changing	its	internal	state	in	accordance	with	the	instructions	it	read	(for
example	changing	from	‘add’	to	‘divide’),	and	eventually	finishing	at	the
other	end	of	the	tape,	or	at	some	square	specified	by	the	instructions,
having	written	a	message	of	its	own,	the	answer	to	the	question	posed	by
the	original	message.	Depending	on	which	symbol	there	is	in	a	certain
square,	it	always	knows	what	to	do	next.	Turing	proved	that	there	could
exist	a	universal	machine	of	this	kind	(now	called	a	universal	Turing
machine)	which	could	solve	any	problem	that	could	be	expressed	in	the

appropriate	symbolic	language.7	It	would	be	a	machine	which,	in
Turing’s	own	words:
…	can	be	made	to	do	the	work	of	any	special-purpose	machine,	that	is	to	say	to	carry	out	any	piece	of	computing,	if	a

tape	bearing	suitable	‘instructions’	is	inserted	into	it.

This	is	so	familiar	today	to	even	the	most	naive	computer	user	as	a



This	is	so	familiar	today	to	even	the	most	naive	computer	user	as	a
description	of	how	computers	work,	with	the	programmed	software	in
its	memory	playing	the	part	of	the	tape	and	the	hardware	of	the
computer	representing	Turing’s	machine,	that	it	is	hard	to	grasp	how
fundamental	a	breakthrough	this	was	in	1936.	Quite	apart	from	the
practical	value	of	these	ideas,	soon	to	be	realized	under	the	pressures	of
the	wartime	emergency,	Turing’s	paper	raised	profound	issues	that	are
relevant	to	an	understanding	of	life	and	other	complex	systems.	In	many
cases,	the	advantage	of	a	Turing	machine	is	that	the	instructions	telling
it	how	to	carry	out	a	computation	(the	algorithm)	are	far	more	compact
than	the	fruits	of	that	calculation.	For	example,	there	is	a	reasonably
short	algorithm	which	specifies	how	to	calculate	π,	without	actually
writing	out	the	infinite	string	of	digits	representing	π.	For	many
purposes,	the	algorithm	is	π.	More	prosaically,	the	familiar	‘multiply’
technique	is	an	algorithm,	although	in	everyday	terms	writing,	say,	6	×
9	is	hardly	a	shorthand	version	of	writing	54.	Turing	showed	that	there
are	systems	which	cannot	be	‘compressed’	algorithmically,	and	whose
most	compact	representations	are	themselves	–	one	of	the	key	concepts
we	encountered,	from	another	direction,	in	our	earlier	discussion	of
chaos.	In	particular,	as	we	have	seen,	the	shortest	description	of	the
Universe	is	the	Universe	itself.

By	the	time	the	Second	World	War	broke	out,	Turing	was	already
trying	to	build	actual	machines	that	would	demonstrate	these	principles
at	work,	even	though	they	would	fall	some	way	short	of	being	universal
computing	machines.	In	the	course	of	the	code-breaking	work	at
Bletchley	Park	a	secret	British	project	did	develop	the	first	properly
programmable	digital	computer.	In	the	years	immediately	after	the	war,
Turing	continued	to	work	on	the	design	of	computers,	first	at	the



Turing	continued	to	work	on	the	design	of	computers,	first	at	the
National	Physical	Laboratory	(NPL)	and	then	(from	1948	onwards)	at
the	University	of	Manchester.	It	was	the	impetus	to	computer
development	provided	by	the	code-breaking	work,	and	particularly
Turing’s	contribution,	that	made	Lewis	Fry	Richardson’s	dream	of
numerical	weather-forecasting	become	a	reality	just	about	in
Richardson’s	own	lifetime,	and	which	then	led	Edward	Lorenz	to	the
rediscovery	of	chaos.

But	Turing’s	own	vision	was	already	moving	much	further	along.	He
spent	the	academic	year	1947–8	working	in	Cambridge,	on	secondment
from	the	NPL,	and	wrote	a	paper,	never	published	in	his	lifetime,	on
what	we	would	now	call	neural	nets	–	an	attempt	to	demonstrate	that
any	sufficiently	complex	mechanical	system	could	learn	from	experience,
without	actually	being	programmed	by	an	outside	intelligence.	By	1950,
settled	in	Manchester,	he	was	ready	to	begin	to	apply	the	knowledge	he
had	gained	about	mechanical	systems	and	electronic	computers	to
biological	systems	and	the	human	brain.	The	jump	from	there	to	his
work	on	how	embryos	develop	wasn’t	as	great	as	it	might	seem,	since
Turing	wasn’t	only	interested	in	how	brains	grow	and	form	connections;
his	interest	in	the	way	the	variety	of	living	things	develop	from	simple
beginnings	had	been	stimulated	in	his	youth	by	reading	D’Arcy
Thompson’s	classic	book	On	Growth	and	Form.	So	at	the	time	Turing	was
elected	as	a	Fellow	of	the	Royal	Society	in	1951,	for	his	contributions	to
computer	science,	he	was	already	working	on	what	would	probably,	had
he	lived,	have	been	an	even	greater	contribution	to	science.

Even	Turing	couldn’t	leap	straight	from	the	understanding	of	biology
that	existed	at	the	beginning	of	the	1950s	to	a	model	of	how	the	brain



itself	develops	its	network	of	connections	–	after	all,	the	double	helix
structure	of	DNA,	the	life	molecule,	was	not	determined	until	1953,	by
Francis	Crick	and	James	Watson,	working	in	Cambridge.	Instead,	he
decided	to	tackle	the	fundamental	problem	of	how	structure	emerges	in
the	developing	embryo	from	what	is	an	almost	spherical,	almost
featureless	initial	blob	of	cells,	the	blastocyst	formed	from	the	fertilized
egg.	In	mathematical	terms,	the	problem	was	one	of	broken	symmetry,	a
phenomenon	already	familiar	to	physicists	in	other	contexts	(not	least,
Bénard	convection).	A	good	example	of	symmetry	breaking	occurs	when
certain	kinds	of	magnetic	substances	are	heated	and	then	cooled	down.
Magnetic	materials	such	as	iron	can	be	regarded	as	made	up	of	a
collection	of	tiny	dipoles,	like	little	bar	magnets.	Above	a	critical
temperature,	known	as	the	Curie	point	(after	Pierre	Curie,	who
discovered	the	effect	in	1895),	there	is	enough	heat	energy	to	break	any
magnetic	links	between	these	dipoles,	so	that	they	can	spin	around	and
are	jumbled	up	in	a	random	fashion,	pointing	in	all	directions,	so	that
there	is	no	overall	magnetic	field.	In	magnetic	terms	the	material	can	be
said	to	be	spherically	symmetric,	because	there	is	no	preferred	magnetic
direction.	As	the	temperature	drops	below	the	Curie	point	(760	°C	for
iron),	the	magnetic	forces	between	adjacent	dipoles	overcome	the
tendency	of	their	declining	heat	energy	to	jumble	them	up,	and	the
dipoles	line	up	to	produce	an	overall	magnetic	field,	with	a	north	pole	at
one	end	and	a	south	pole	at	the	other	end.	The	original	symmetry	has
been	broken.	Such	a	change	is	called	a	phase	transition,	and	is	similar	to
the	way	water	freezes	into	ice	in	a	phase	transition	at	0	°C.	The	concept
of	a	phase	transition	also	has	important	applications	in	particle	physics,
which	we	need	not	go	into	here;	the	relevant	point	is	that	although	such



ideas	had	not	been	widely	applied	in	biology	before	1950,	at	that	time	it
was	natural	for	a	mathematician	moving	into	the	theory	of	biological
development	to	think	in	terms	of	symmetry	breaking,	and	to	have	the
mathematical	tools	describing	the	general	nature	of	such	transitions
available.

In	1952,	Turing	published	a	paper	which	described	in	principle	how
the	symmetry	of	an	initially	uniform	mixture	of	chemicals	could	be
spontaneously	broken	by	the	diffusion	of	different	chemicals	through	the
mixture.	The	anticipated	relevance	of	this	to	biology	was	clear	from	the

title	of	the	paper,	‘The	chemical	basis	of	morphogenesis’,8	and	Turing’s
proposal	was	that	something	like	the	process	that	he	described
mathematically	might	actually	take	place	in	the	developing	embryo,	to
produce	patterns	where	none	existed	originally.

At	first	sight,	Turing’s	proposal	seems	utterly	counter-intuitive.	We
expect	diffusion	to	mix	things	up,	and	to	destroy	patterns,	not	to	create
patterns	where	none	exist	originally.	The	obvious	example	is	the	way	a
drop	of	ink	placed	in	a	glass	of	water	spreads	out	to	fill	the	glass	with	a
uniform	mixture	of	water	and	ink;	it	seems	almost	as	if	Turing	was
suggesting	a	reversal	of	the	thermodynamic	processes	that	operate	on
this	scale,	with	time	running	backwards	and	a	uniform	mixture	of	water
and	ink	separating	out	into	a	glass	of	clear	water	surrounding	a	single
droplet	of	ink.	But	that	was	not	the	case,	and	the	key	to	Turing’s	insight
is	that	the	pattern-forming	process	he	described	involves	at	least	two
chemicals	interacting	with	one	another.

It	all	depends	on	the	process	known	as	catalysis,	whereby	the
presence	of	a	particular	chemical	substance	(the	catalyst)	encourages	a



particular	chemical	reaction	to	take	place.	In	some	cases,	the	presence	of
a	chemical	compound	(which	we	can	represent	by	the	letter	A)	in	a
mixture	of	chemicals	encourages	reactions	which	make	more	of	the
compound.	The	reaction	is	said	to	be	autocatalytic,	and	since	the	more	A
there	is,	the	more	A	is	produced,	we	can	see	that	this	is	another	example
of	positive	feedback	at	work	in	a	non-linear	process.	On	the	other	hand,
there	are	chemicals	that	act	in	the	opposite	way,	to	inhibit	certain
chemical	reactions.	Logically	enough,	they	are	called	inhibitors.	And
there	is	nothing	to	say	that	a	single	substance	cannot	encourage	more
than	one	chemical	reaction	at	the	same	time.	Turing	calculated	that
patterns	could	arise	in	a	mixture	of	chemicals	if	the	catalyst	A	not	only
encouraged	the	production	of	more	A,	but	also	encouraged	the	formation
of	another	compound,	B,	which	was	an	inhibitor	that	acted	to	slow	down
the	rate	at	which	more	A	is	produced.	His	crucial	suggestion	was	that
once	A	and	B	formed	they	would	diffuse	through	the	mixture	of
chemicals	at	different	rates,	so	that	there	would	be	more	A	than	B	in
some	parts	of	the	mixture,	and	more	B	than	A	in	other	places.	In	order	to
calculate	just	how	much	A	and	B	there	would	be	in	different	places,
Turing	had	to	use	the	simplest	equations	he	could,	since	electronic
computers	were	still	highly	limited	in	their	abilities,	and	in	very	short
supply,	so	he	was	working	everything	out	on	paper.	This	meant	working
with	linear	approximations	to	the	real	non-linear	equations	describing
the	situation,	and	these	equations	turn	out	to	be	very	unstable,	in	the
sense	that	a	small	error	in	one	part	of	the	calculations	leads	to	a	big
error	later	on.	As	a	result,	Turing	could	only	calculate	what	was	going
on	for	the	simplest	systems,	but	that	was	enough	to	hint	at	the
possibilities.	Turing	himself	acknowledged	that	a	full	investigation	of	his



ideas	would	have	to	await	the	development	of	more	powerful	digital
computers,	but	in	developing	his	ideas	as	best	he	could	beyond	those
sketched	out	in	his	1952	paper	he	showed	how	the	competition	between
A	and	B	was	the	key	to	pattern	formation,	and	that	it	was	essential	that
B	must	diffuse	through	the	mixture	more	quickly	than	A,	so	that	while
the	runaway	production	of	A	by	the	autocatalytic	feedback	process	is
always	a	local	phenomenon,	the	inhibition	of	A	by	B	is	a	widespread
phenomenon.	Also	the	rapid	diffusion	of	B	away	from	where	it	is	being
made	means	that	it	doesn’t	entirely	prevent	the	manufacture	of	A	at	its
source.

To	picture	what	is	going	on,	imagine	the	mixture	of	chemicals	sitting
quietly	in	a	glass	jar.	Because	of	random	fluctuations,	there	will	be	some
spots	in	the	liquid	where	there	is	a	slightly	greater	concentration	of	A,
and	this	will	encourage	the	formation	of	both	A	and	B	at	those	spots.
Most	of	B	will	diffuse	away	from	these	spots,	and	prevent	any	A	forming
in	the	spaces	between	the	spots,	while	the	autocatalytic	process	ensures
that	more	A	(and	B)	continues	to	be	produced	at	the	spots.	(There	will
also	be	places	in	the	original	mixture	where	random	fluctuations
produce	an	excess	of	B	to	start	with,	but,	of	course,	nothing	interesting
will	happen	there.)	Now	suppose	that	chemical	A	is	coloured	red	and
chemical	B	is	coloured	green.	The	result	will	be	that	an	initially	uniform,
featureless	jar	of	liquid	transforms	itself	spontaneously	into	a	sea	of
green	dotted	with	red	spots	that	maintain	their	positions	in	the	liquid	(as
long	as	the	liquid	is	not	stirred	up	or	sloshed	around).	The	pattern	is
stable,	but	in	this	particular	case	it	is	a	dynamic	process,	with	new	A	and
B	being	produced	as	long	as	there	is	a	source	of	the	chemicals	from
which	they	are	being	manufactured,	and	as	long	as	there	is	a	‘sink’



through	which	the	end-products	can	be	removed.	In	the	terminology	that
ought	to	be	becoming	familiar	by	now,	the	pattern	is	stable	and
persistent	provided	that	we	are	dealing	with	an	open,	dissipative	system
which	is	being	maintained	in	a	non-equilibrium	state.	Turing	also
described	mathematically	systems	in	which	there	is	a	changing	pattern
of	colour	rippling	through	the	liquid,	where	it	would	be	more	obvious	to
any	observer	(if	such	systems	could	be	replicated	in	real	experiments)
that	a	dynamic	process	was	going	on.	Today,	an	autocatalytic	compound
such	as	A	is	called	an	actuator,	while	B	is	indeed	known	as	an	inhibitor;
Turing	himself,	though,	didn’t	use	these	terms,	and	referred	to	B	as	a

‘poison’,	which	now	has	chilling	echoes	of	his	own	death.9	Although	it
may	seem	far	removed	from	the	development	of	an	embryo	(let	alone	a
brain),	the	essential	point	about	Turing’s	discovery	was	that	it	provided
a	natural	chemical	way	in	which	symmetry	could	be	broken	to
spontaneously	create	patterns	in	an	initially	uniform	system	–	if	there
were	real	chemical	systems	that	behaved	in	this	way.

Intriguing	though	Turing’s	ideas	were,	although	his	paper	is	seen	as
being	of	seminal	importance	to	theoretical	biology	today,	in	the	1950s
and	through	most	of	the	1960s	it	attracted	little	interest	among	chemists
and	biologists,	precisely	because	nobody	knew	of	any	real	chemical
system	which	behaved	in	the	way	that	this	mathematical	model
described.	Nobody,	that	is,	except	one	person,	the	Russian	biochemist
Boris	Belousov,	and	he,	not	being	a	reader	of	the	Philosophical
Transactions	of	the	Royal	Society,	didn’t	know	about	Turing’s	work,	just	as
Turing	never	learned	about	Belousov’s	work	before	his	own	untimely
death.	At	the	beginning	of	the	1950s,	Belousov	was	working	at	the
Soviet	Ministry	of	Health,	and	interested	in	the	way	glucose	is	broken



down	in	the	body	to	release	energy.	He	was	already	in	his	early	fifties,
an	unusually	advanced	age	for	any	scientist	to	make	a	major	new
discovery,	and	had	a	background	of	work	in	a	military	laboratory,	about
which	little	is	recorded,	except	that	he	reached	the	rank	of	Combrig,
roughly	equivalent	to	a	Colonel	in	the	army	and	an	unusually	high
distinction	for	a	chemist,	before	retiring	from	this	work	after	the	Second
World	War.	Like	many	other	metabolic	processes,	the	breakdown	of
glucose	that	Belousov	was	interested	in	is	facilitated	by	the	action	of
enzymes,	different	kinds	of	protein	molecules	which	act	as	catalysts	for
different	steps	in	the	appropriate	suite	of	chemical	reactions.	Belousov
concocted	a	mixture	of	chemicals	which	he	thought	would	mimic	at	least
some	features	of	this	process,	and	was	utterly	astonished	when	the
solution	in	front	of	him	kept	changing	from	being	clear	and	colourless	to
yellow	and	back	again,	with	a	regular,	repeating	rhythm.	It	was	as	if	he
had	sat	down	with	a	glass	of	red	wine,	only	to	see	the	colour	disappear
from	the	wine,	then	reappear,	not	once	but	many	times,	as	if	by	magic.
This	seemed	to	fly	in	the	face	of	the	second	law	of	thermodynamics,	as	it
was	understood	at	the	time.	It	would	be	entirely	reasonable	for	the
liquid	to	change	from	clear	to	yellow,	if	the	yellow	represented	a	more
stable	state	with	higher	entropy.	And	it	would	be	entirely	reasonable	for
the	liquid	to	change	from	yellow	to	clear,	if	clear	represented	a	more
stable	state	with	higher	entropy.	But	both	states	couldn’t	be	at	higher
entropy	than	the	other!	It	was	as	if,	using	the	original	nineteenth-century
ideas	about	the	relationship	between	thermodynamics	and	time,	the
arrow	of	time	itself	kept	reversing,	flipping	backwards	and	forwards
within	the	fluid.

Belousov	might	have	been	less	astonished	if	he	had	known	about



some	earlier	work,	which	to	an	extent	foreshadowed	both	his	own
experiments	and	Turing’s	mathematical	models.	Back	in	1910,	another
mathematical	modeller,	the	Austrian	Alfred	Lotka	(1880–1949),	had
come	up	with	a	mathematical	description	of	a	hypothetical	chemical
system	which	oscillated	in	this	way,	first	producing	an	excess	of	one
compound	then	reversing	to	produce	an	excess	of	another	compound,

then	reversing	again,	and	so	on.10	In	a	neat	example	of	how	simple
processes	involving	feedback	can	often	be	described	by	the	same	laws
under	what	may	seem	at	first	sight	to	be	very	different	circumstances,	in
the	1930s	the	Italian	Vito	Volterra	(1860-1940)	showed	that	Lotka’s
equations	worked	quite	well	as	a	description	of	the	way	fish	populations
change	when	there	is	an	interaction	between	one	prey	species	and	one
predator	species,	following	a	boom	and	bust	cycle	as	first	one	species
and	then	the	other	flourishes.	And	as	early	as	1921	the	Canadian-born
chemist	William	Bray	(1879-1946),	then	working	at	the	University	of
California,	Berkeley,	had	found	that	a	chemical	reaction	involving
hydrogen	peroxide	and	iodate	produced	a	mixture	of	iodine	and	oxygen
in	which	the	proportions	of	the	two	products	oscillated	in	more	or	less
the	way	Lotka	had	described.	Even	though	Bray	referred	to	Lotka’s
model	when	he	announced	his	discovery,	the	response	of	his	colleagues
was	essentially	that,	since	his	results	violated	the	second	law	of
thermodynamics,	there	must	be	something	wrong	with	his	experiment,
so	that	the	‘discovery’	was	an	artefact	caused	by	carelessness	in	mixing
and	keeping	track	of	the	ingredients.	Lotka,	Volterra	and	Bray	were	all
dead	when	Belousov	encountered	almost	exactly	the	same	response
when	he	tried	to	publish	a	paper	describing	his	findings	in	1951,	a	year
before	Turing	would	publish	his	seminal	paper.	Belousov’s	results,	said



the	editor	of	the	journal	he	submitted	them	to,11	contravened	the	second
law	of	thermodynamics,	so	his	experimental	procedure	must	be	faulty.

Some	idea	of	the	status	of	the	second	law	as	something	approaching
Holy	Writ	at	this	time	can	be	gleaned	from	a	famous	quotation	from	the
writings	of	the	British	astrophysicist	Arthur	Eddington.	In	his	book	The
Nature	of	the	Physical	World,	published	by	Cambridge	University	Press	in
1928,	he	wrote:
The	law	that	entropy	always	increases	–	the	second	law	of	thermodynamics	–	holds,	I	think,	the	supreme	position	among

the	laws	of	Nature.	If	someone	points	out	to	you	that	your	pet	theory	of	the	universe	is	in	disagreement	with	Maxwell’s

equations	–	then	so	much	the	worse	for	Maxwell’s	equations.	If	it	is	found	to	be	contradicted	by	observation	–	well,	these

experimentalists	do	bungle	things	sometimes.	But	if	your	theory	is	found	to	be	against	the	second	law	of	thermodynamics

I	can	give	you	no	hope;	there	is	nothing	for	it	but	to	collapse	in	deepest	humiliation.

Replace	the	word	‘theory’	by	‘experiment’	in	the	final	sentence	and	you
have	essentially	the	response	to	Belousov	–	he	was	a	bungling
experimentalist,	and	should	‘collapse	in	deepest	humiliation’.	I	confess
that	I	have	previously	quoted	this	remark	by	Eddington	with	approval,
and	without	pausing	to	explain	that	although	true	as	far	as	it	goes,	the
original	formulation	of	the	second	law	is	not	the	ultimate	truth	that	he
thought	it	was,	and	has	to	be	reconsidered	in	non-equilibrium	situations
and	where	gravity	is	involved.	But	that	was	far	from	being	widely
understood	in	1951.

Belousov’s	reaction	to	the	rejection	of	his	paper	was	perhaps	what
one	might	have	expected	from	a	man	of	his	age	and	background.	He	felt
personally	insulted	at	the	slur	on	his	professional	skill	as	an
experimenter,	and	resolved	not	to	do	any	more	work	in	the	field	if	his
results	were	going	to	be	dismissed	in	this	way.	One	of	his	younger
colleagues,	S.	E.	Shnoll,	tried	to	encourage	him	to	persevere,	but	without
success.	After	trying	unsuccessfully	for	years	to	get	his	work	published,



in	1959	Belousov	managed	to	smuggle	a	two-page	summary	of	his
findings	into	print	by	attaching	it	to	the	published	version	of	a	report	he
had	given	on	a	completely	different	topic,	to	a	symposium	on	radiation
medicine	held	in	Moscow	the	previous	year.	Then,	he	entirely

abandoned	this	work.12	The	proceedings	of	the	meeting	(which	were	not
subject	to	the	refereeing	process	or	approval	by	an	editor)	appeared	only
in	Russian;	they	were	almost	unread	outside	the	Soviet	Union,	and	not
exactly	widely	read	within	the	USSR.	But	Shnoll	maintained	his	interest
in	Belousov’s	work,	and	in	the	1960s	he	drew	it	to	the	attention	of	one
of	his	postgraduate	students,	Anatoly	Zhabotinsky,	encouraging	him	to
follow	up	Belousov’s	lead.	Just	that	one	person	in	the	next	generation	of
chemists	had	the	incentive	to	follow	up	Belousov’s	two-page	summary,
but	one	was	all	it	took	to	grab	hold	of	the	discovery	and	make	the
scientific	world	pay	attention.

Zhabotinsky	was	a	graduate	student	at	Moscow	State	University
when	he	was	introduced	to	Belousov’s	discovery	and	was	intrigued
enough	to	try	the	reaction	for	himself	(it’s	hard	not	to	be	intrigued	when
your	supervisor	‘suggests’	that	you	look	into	a	particular	research
problem),	confirming	that	it	worked	in	the	way	Belousov	had	described,
and	going	on	to	tinker	with	the	ingredients	until	he	produced	a	mixture
which	exhibited	a	much	more	dramatic	colour	change,	from	red	to	blue
and	back	again.	It	shouldn’t	be	a	surprise	that	it	was	a	student	who	took
up	the	idea,	since	young	researchers	are	generally	less	hidebound	by
tradition	than	their	elders	and	more	willing	to	consider	the	possibility
that	sacrosanct	laws	might	be	broken	(although	more	often	than	not	the
laws	do	stand	up	to	this	pressure).	Zhabotinsky	described	his	results	at
an	international	meeting	held	in	Prague	in	1968,	where	western



scientists	first	learned	about	the	intriguing	behaviour	of	what	came	to	be
known	as	the	Belousov-Zhabotinsky,	or	BZ,	reaction.	This	made	all	the
more	impact	because	some	of	them	were	already	aware	of	Turing’s
work,	but	had	not,	as	we	have	seen,	thought	that	it	might	be	relevant	to
real	chemical	systems.	Unlike	Turing,	Belousov	lived	long	enough	to	see
his	discovery	taken	up	in	this	way,	but	he	died	in	1970,	before	the	full
importance	of	such	reactions	was	appreciated.

Hardly	surprisingly,	one	of	the	first	people	to	pick	up	on
Zhabotinsky’s	work	and	develop	a	theoretical	model	to	describe	the	kind
of	oscillations	seen	in	the	BZ	reaction	was	Ilya	Prigogine,	who	had	met
Turing	in	England	in	1952,	shortly	after	Turing	had	written	his	paper	on
the	chemistry	of	making	patterns,	and	had	discussed	that	work	with	him.
Working	now	in	Brussels	with	his	colleague	René	Lefever,	and	jumping
off	from	Turing’s	work,	before	the	end	of	1968	Prigogine	had	come	up
with	a	model	involving	two	chemical	substances	which	are	converted
into	two	other	chemical	substances	in	a	multi-step	process	that	involves
two	short-lived	intermediate	products.	The	model	became	known	as	the
Brusselator;	we	don’t	need	to	go	into	the	details	of	how	it	works
(although	they	are	only	marginally	more	complicated	than	Turing’s
model	of	how	to	make	spots),	but	the	important	point	is	that	the
reactions	involve	feedback	and	non-linearity.	If	we	imagine	that	the
products	of	the	series	of	reactions	are	respectively	red	and	blue,	then	the
Brusselator	tells	us	that	as	long	as	the	mixture	is	kept	in	a	dissipative
state	far	enough	away	from	equilibrium,	with	a	constant	supply	of	raw
materials	being	added	and	the	end-products	being	drained	away,	it	will
change	regularly	from	red	to	blue	and	back,	without	settling	down	to	the
uniform	purple	colour	that	would	be	expected	from	a	naive	faith	in	the



second	law	of	thermodynamics.	The	whole	process	is,	indeed,	consistent
with	the	understanding	of	how	the	second	law	has	to	be	modified	in	far
from	equilibrium	conditions	already	developed	by	Prigogine	and	his
colleagues.

In	the	1970s,	progress	was	made	both	with	the	modelling	and	with
the	investigation	of	real	chemical	systems	in	which	structure	is
spontaneously	created	by	self-organization.	On	the	experimental	side,
chemists	soon	found	ways	to	make	waves	of	colour	travel	through
chemical	mixtures	–	in	the	BZ	reaction	itself,	in	a	shallow	dish	of	the
appropriate	chemical	stew,	it	is	possible	to	produce	concentric	circles
and	spirals	of	red	and	blue	which	travel	outwards	from	their	source.
Among	the	huge	variety	of	patterns	developed	in	similar	experiments
over	the	following	decades,	in	the	1990s	chemists	at	last	found	a	way	to
produce	stationary	patterns	of	spots	just	like	the	ones	originally	described
by	Turing.	The	detailed	chemistry	of	the	BZ	reaction	was	investigated	in
the	early	1970s	by	a	team	at	the	University	of	Oregon,	who	identified	at
least	thirty	separate	chemical	species	involved	in	the	interlocking	series
of	chemical	reactions	that	produce	the	overall	colour	changes,	including
some	short-lived	intermediaries	like	those	in	the	Brusselator.	This	led
them,	in	1974,	to	come	up	with	a	model	describing	the	key	steps	in	the
BZ	process	in	terms	of	just	six	kinds	of	chemical	substance,	interacting
with	one	another	in	five	distinct	steps,	including	the	all-important
influence	of	autocatalysis.	The	difference	between	this	model	and	both
Turing’s	model	and	the	Brusselator	was	that	whereas	the	latter	dealt
with	hypothetical	substances	labelled	A,	B	and	so	on,	the	Oregon	team’s
model	dealt	with	real	chemical	compounds	involved	in	actual	chemical
reactions.	The	model	became	known	as	the	Oregonator.	Again,	we	don’t



need	to	go	into	details;	the	point	is	that	what	seems	to	be	a	complicated
pattern	of	self-organization	can	be	explained	in	terms	of	a	few	simple
interactions.

But	there’s	more.	It	is	actually	possible	to	set	up	the	BZ	mixture	in	an
unchanging,	uniform	state	–	if	you	wait	long	enough	without	adding	any
new	ingredients,	it	will	eventually	settle	down	all	by	itself.	Now,	when
you	add	some	more	reactants,	the	oscillatory	behaviour	we	have
described	will	begin.	There	has	been	a	bifurcation,	with	the	system
changing	from	a	period	one	state	to	a	period	two	state.	You	can	guess
what	is	coming	next.	If	you	gradually	increase	the	rate	at	which	new
ingredients	are	flowing	into	the	system	and	‘waste	products’	are	being
removed,	at	a	critical	threshold	the	oscillatory	pattern	becomes	more
complicated,	exhibiting	a	double	rhythm,	as	the	system	bifurcates
further	into	a	period	four	state.	Keep	increasing	the	flow	of	reactants,
and	the	period-doubling	cascade	familiar	from	the	dripping	tap	and
other	examples	we	have	mentioned	appears	in	all	its	glory,	the	periodic
pattern	becomes	less	obvious,	and	the	system	tips	over	the	edge	in	chaos
(in	this	case,	actually	rather	quickly,	with	everything	after	period	four
happening	in	a	rush).	All	the	interesting	things	we	have	been	describing,
notably	self-organization	and	the	spontaneous	appearance	of	patterns
out	of	uniform	systems,	occur	on	the	edge	of	chaos.	All	of	this	can	be
described	in	the	language	of	phase	space,	limit	cycles	and	attractors,	just
as	in	the	earlier	examples	we	discussed.	There	is	even	evidence	for	the
existence	of	strange	attractors	associated	with	the	trajectories	in	phase

space	describing	the	evolution	of	a	BZ	reaction.13	But	although	it	is	good
to	see	how	all	of	this	relates	to	the	story	so	far,	we	seem	to	have
wandered	a	long	way	from	Turing’s	hope	of	providing	insight	into	the



process	of	morphogenesis,	the	aspect	of	embryology	concerned	with	the
development	of	pattern	and	form	in	the	growing	embryo.	Not	so;
although	his	ideas	have	yet	to	be	proved	as	a	key	contribution	to	the
overall	development	of	the	embryo	(though	work	is	still	very	much	in
progress	on	this),	there	is	one	area	in	particular	where	they	have	been
spectacularly,	and	highly	visibly,	successful.

This	triumph	for	the	Turing	mechanism	concerns	the	way	markings
such	as	stripes	and	spots	develop	on	the	skin	and	coats	of	mammals,	and
more	generally	how	patterns	form	on	the	surfaces	of	other	animals.	A
major	contribution	to	this	investigation	was	made	by	James	Murray,
initially	at	the	University	of	Oxford	and	later	of	the	University	of
Washington,	Seattle,	who	summed	up	many	of	his	discoveries	in	a	highly
readable	article	in	Scientific	American	in	1988,	under	the	title	‘How	the

leopard	gets	its	spots’;	14	a	more	technical	but	less	readable	full	account
of	this	work	can	be	found	in	his	book	Mathematical	Biology.	Murray
found	that	not	only	the	spots	of	the	leopard	but	also	the	stripes	on	a
zebra,	the	blotches	on	a	giraffe,	and	even	the	absence	of	patterning	on
the	coat	of	a	mouse	or	an	elephant,	can	all	be	explained	by	the	same
simple	process,	involving	diffusion	of	actuator	and	inhibitor	chemicals
across	the	surface	of	the	developing	embryo	at	a	key	stage	during	its
growth.	Nobody	has	yet	proved	that	this	definitely	is	the	way	the
patterning	process	works,	but	it	is	certainly	true	that	the	kind	of	patterns
formed	are	the	ones	that	would	form	if	such	a	patterning	process	were	at
work.	The	idea	has	great	appeal,	not	least	because	of	its	simplicity.	At
one	level,	in	terms	of	the	DNA	code	describing	the	construction	of	a
single	individual	body,	storing	the	information	which	says,	in	effect,
‘release	these	two	chemicals	at	this	stage	of	development’	takes	up	much



less	room	(less	memory,	using	the	computer	analogy)	than	a	literal
blueprint	describing	precisely	the	exact	location	of	every	spot	and	stripe
on	the	adult	body.	And	at	another	level,	having	one	simple	mechanism
that	explains	how	and	why	patterns	of	different	kinds	appear	on	the
bodies	of	different	animals,	and	also	why	some	animals	have	no	pattern
at	all,	is	much	more	parsimonious	than	having	a	different	blueprint	to
describe	each	different	kind	of	pattern	on	each	different	kind	of	animal.
Finally,	as	we	shall	see,	the	kind	of	simple	mechanism	originally
proposed	by	Turing	and	discussed	in	detail	by	Murray	and	his
contemporaries	offers	important	insights	into	the	mechanisms	of
evolution.	It	is	not	quite	always	true	in	science	that	the	simplest	solution
to	a	problem	is	certain	to	be	the	right	one,	but	this	approach,	known	as

Ockham’s	Razor,15	has	proved	an	extremely	reliable	rule	of	thumb	in
most	circumstances,	and	it	is	certainly	always	advisable	to	choose	the
simplest	solution	unless	there	are	overwhelming	reasons	not	to.	In	this
case,	the	Turing	process	is	the	simplest	solution	to	the	puzzle.

The	patterns	we	see	on	the	surfaces	of	mammals	are	either	skin
colours	or	colours	that	the	hairs	of	the	pelt	have	picked	up	as	they	grow
from	a	particular	region	of	skin.	Either	way,	it	is	the	presence	of
something	in	the	skin	that	determines	the	colour.	There	are	surprisingly
few	of	these	colours	–	black,	white,	brown,	and	a	range	of	orangey-
yellow	colours	–	with	just	about	the	full	range	expressed	in	the	markings
of	a	tortoiseshell	cat.	The	colours	depend	on	the	presence	or	absence	of
two	pigments	produced	by	cells	in	the	skin,	with	the	intensity	of	the
colour	depending	on	how	much	of	each	pigment	is	present	–	eumelanin,
which	gives	a	black	or	brown	colour,	and	phaeomelanin,	which	gives	a
yellow	or	orange	colour	(the	absence	of	either	melanin	leaves	the	hair	or



skin	white).	But	what	decides	whether	certain	cells	are	‘switched	on’	to
produce	one	or	the	other	kind	of	melanin,	and	in	what	quantity?
Murray’s	triumph	was	to	show	that	even	though	we	do	not	yet	know
exactly	what	chemicals	are	involved,	the	patterns	we	see	on	real,	living
animals	are	exactly	(and	only)	the	patterns	that	would	be	produced	by
Turing	reactions	involving	diffusion	of	an	actuator	and	an	inhibitor
across	the	surface	of	the	growing	embryo	early	in	its	development,
within	a	few	weeks	of	conception	(in	the	zebra,	for	example,	there	is
evidence	that	patterns	in	the	skin	are	laid	down	about	21-35	days	after
conception,	with	an	overall	gestation	period	of	360	days).	If	the	presence
of	one	of	these	chemicals	then	also	switched	on	the	ability	of	a	cell	to
produce	melanin,	the	result	would	be	that	a	pattern	equivalent	to	the
pattern	seen	in	the	shallow-dish	versions	of	the	BZ	reaction	would	be
invisibly	imprinted	on	those	cells,	but	would	only	show	up	later	in	life
when	some	other	chemical	trigger	(or	the	growth	of	hair)	sent	a	message
to	begin	making	melanin	–	a	message	that	would	be	received	by	every
cell	in	the	skin,	but	would	only	be	acted	upon	by	those	cells	that	had
been	primed	during	the	Turing	reaction.

So,	without	worrying	too	much	about	the	biochemical	processes
involved,	‘all’	that	Murray	had	to	do	was	to	develop	a	mathematical
model	that	could	be	used	to	predict	the	way	patterns	would	form	as	a
result	of	the	Turing	reaction	on	surfaces	shaped	like	the	surfaces	of
mammalian	embryos	at	different	stages	of	their	development.	Because
the	process	involves	waves	travelling	across	(or	through)	the	surfaces,
both	the	size	and	shape	of	the	surface	affect	the	pattern	produced	by	the
reaction.	As	Murray	points	out,	the	situation	is	superficially	rather	like
the	way	in	which	the	sounds	produced	by	the	stretched	skin	of	a	drum



depend	on	the	size	and	shape	of	the	drumskin,	because	different-sized
sound	waves	(that	is,	ones	with	different	wavelengths,	corresponding	to
different	musical	notes)	fit	neatly	into	different-sized	skins	(there	is
actually	a	rather	close	mathematical	analogy	between	the	two	systems,
although	the	physical	processes	involved	are	very	different).	He	found
that	if	the	surface	is	very	small	at	the	time	the	Turing	process	is
triggered,	no	pattern	can	form	at	all.	There	is	not	enough	room	for	the
mechanism	to	get	to	work,	or,	if	you	prefer	to	think	in	those	terms,	the
‘wavelength’	associated	with	the	reaction	is	bigger	than	the	size	of	the
skin,	so	the	pattern	cannot	be	seen	(it	would	be	like	trying	to	paint	fine
details	on	a	small	canvas	using	a	paint-roller	designed	for	use	on	walls).
At	the	other	extreme,	where	relatively	large	surfaces	are	involved,	the
interactions	become	too	complicated	to	allow	any	overall	patterns	to
emerge.	It	is	as	if	very	many	different	conversations	are	going	on	in	a
room	at	once,	producing	an	overall	effect	which	is	just	a	uniform
hubbub	of	noise.	There	is,	in	fact,	a	very	fine	scale	‘patterning’	possible
on	large	surfaces,	and	if	you	look	closely	enough	you	would	see	that	not
every	hair	on	the	surface	of,	say,	an	elephant	has	precisely	the	same
colour,	but	from	a	distance	the	elephant	looks	a	uniform	colour,	just	as
in	a	pointillist	painting	there	is	a	very	fine	structure	of	paint	spots	which
merge	into	a	uniform	colour	when	seen	from	a	little	distance	away	(and
just	as,	in	a	crowded	room	full	of	chattering	people,	we	can	pick	out
what	our	neighbour	is	saying	in	spite	of	the	background	noise).	So,
according	to	the	model,	both	very	small	and	very	large	mammals	should
have	unpatterned	surfaces,	which	is	exactly	what	we	see	in	nature.	What
happens	in	between	these	extremes?

Starting	small	and	working	upwards	in	size,	it	turns	out	that	the	first
kind	of	pattern	that	can	form	is	one	with	rather	broad	bands,	then



kind	of	pattern	that	can	form	is	one	with	rather	broad	bands,	then
stripes,	followed	by	spots,	followed	by	large	blotches	separated	by
narrow	strips	forming	the	boundaries	between	the	blotches,	while	for
larger	surfaces	still	the	blotches	merge	into	a	uniform	colour.	The	overall
patterns	produced	closely	resemble	the	range	of	patterns	seen	in	nature,
from	the	leopard’s	spots	to	the	stripes	on	a	tiger	or	a	zebra,	to	the
blotchy	markings	on	a	giraffe.	As	Murray	sums	up	in	his	book:
We	see	that	there	is	a	striking	similarity	between	the	patterns	that	the	model	generates	and	those	found	on	a	wide	variety

of	animals.	Even	with	the	restrictions	we	imposed	on	the	parameters	for	our	simulations	the	wealth	of	possible	patterns	is

remarkable.	The	patterns	depend	strongly	on	the	geometry	and	scale	of	the	reaction	domain	although	later	growth	may

distort	the	initial	pattern…	It	is	an	appealing	idea	that	a	single	mechanism	could	generate	all	of	the	observed	mammalian

coat	patterns.

But,	of	course,	an	animal	doesn’t	have	to	have	a	pattern,	even	if	there
is	a	biochemical	mechanism	which	allows	it	to	have	a	pattern.	The
mechanism	can	always	be	switched	off,	and	there	are	very	obvious
evolutionary	reasons	why	a	polar	bear,	say,	should	have	a	uniform	white
colour.	But	where	patterns	have	evolved,	a	very	neat	example	of	the
correlation	between	the	kind	of	pattern	and	the	size	of	the	surface
available	can	be	seen	in	the	tails	of	many	members	of	the	cat	family.	For
tails	which	are	more	or	less	cylindrical,	the	patterns	seen	on	them	may
be	either	spots	or	circular	bands,	stripes	around	the	tail.	But	for	tails
which	taper	down	at	the	end,	like	that	of	the	jaguar,	even	if	the	base	of
the	tail	is	covered	in	spots,	the	tip	of	the	tail	is	marked	with	striped
bands,	in	line	with	the	prediction	of	the	model	that	bands	always	form
on	smaller	areas	and	spots	are	produced	on	larger	areas.



Figure	4.2	The	patterns	produced	on	the	body	of	an	animal	by	self-organized	chemical	processes	during
the	development	of	an	embryo	(see	below)	are	related	to	the	size	of	the	animal.	The	chemical	diffusion
processes	produce	stripes	on	smaller	areas,	and	spots	in	larger	areas.

One	of	the	key	features	of	the	model,	though,	is	that	the	kind	of
pattern	that	forms	over	the	surface	of	an	animal	does	not	depend	on	the
size	and	shape	of	the	adult,	but	on	the	size	and	shape	of	the	embryo	at
the	time	the	Turing	process	is	at	work.	Clearly	there	is	some	correlation
with	the	size	of	the	adult,	because	from	very	soon	after	conception
elephant	embryos	tend	to	be	larger	at	the	same	stage	of	development
than	mouse	embryos;	but	the	significance	of	the	embryo	size	is
beautifully	highlighted	by	the	differences	in	the	stripes	of	the	two	kinds
of	zebra,	Equus	burchelli	and	Equus	grevyi.	The	former	has	fewer	and
broader	stripes	than	the	latter,	making	them	distinctly	different	when
seen	alongside	each	other,	even	though	the	adults	are	roughly	the	same
size.	By	counting	the	number	of	stripes	in	each	case,	and	taking	account
of	the	way	the	pattern	had	been	distorted	by	the	growth	of	the	animal,
in	the	1970s	J.	B.	L.	Bard	showed	that	the	pattern	seen	on	burchelli	must
be	laid	down	on	the	embryo	when	it	is	twenty-one	days	old,	while	the
pattern	seen	on	grevyi	must	be	laid	down	on	the	embryo	when	it	is	five
weeks	old.	This	was	known	before	Murray	came	up	with	his



mathematical	model	of	the	Turing	effect,	but	the	differences	exactly

correspond	to	the	predictions	of	the	model,	with	broader	stripes
corresponding	to	an	earlier	diffusion	of	the	actuator	and	inhibitor	across
the	surface	of	the	embryo.	The	dramatic	way	in	which	the	genetics	and
the	environment	(‘nature’	and	‘nurture’)	combine	in	this	way	was
highlighted	early	in	the	year	2002,	when	news	was	released	of	the	birth
of	the	first	cloned	kitten.	Because	the	pattern	of	colours	on
multicoloured	animals	results	from	a	combination	of	their	genetic
inheritance	and	events	in	the	womb	(including,	for	example,	the	amount
of	nutrition	received	by	the	developing	embryo),	the	kitten	did	not	have
exactly	the	same	pattern	of	markings	in	her	fur	as	her	mother,	even
though	the	two	animals	had	identical	DNA.

This	also	brings	us	on	to	the	significance	of	all	this	to	our
understanding	of	evolution.	The	visible	differences	between	the	patterns
in	the	two	species	of	zebra	are	produced	simply	by	changing	the	time	at
which	the	Turing	effect	is	at	work	in	the	embryo.	As	far	as	we	know
there	is	no	evolutionary	advantage	in	either	pattern	in	this	particular
case	(not	every	feature	of	anatomy	has	to	be	adaptive).	But	if	there	were
an	advantage	in	having	narrower	(or	broader)	stripes,	perhaps	in	terms
of	providing	better	camouflage,	it	is	easy	to	see	how	natural	variations
from	one	individual	to	another	could	provide	the	raw	material	to
respond	to	the	selection	pressure	and	shift	the	whole	population	of	one
species	of	zebra	in	that	direction,	without	any	change	in	anything	except
the	timing	of	a	particular	event	during	the	development	of	the	embryo	–
one	of	the	smallest	‘mutations’	imaginable.	We	shall	have	more	to	say
about	evolution	–	much	more	–	in	the	rest	of	this	book.	But	to	set	the
scene,	it’s	worth	highlighting	a	few	other	examples	of	the	way	in	which



external	form	seems	to	be	under	the	control	of	simple	chemical
processes.	We	went	into	some	detail	on	Murray’s	model	of	how
mammals	get	their	markings,	both	because	it	was	one	of	the	first	of	this
kind	of	model	and	because	it	follows	on	naturally	from	our	discussion	of
the	Turing	mechanism	and	the	BZ	reaction;	but	there	will	be	no	need	to
go	into	quite	so	much	detail	for	these	other	models,	since	they	operate
on	very	similar	principles.

Without	pre-empting	our	later	discussion	of	evolution,	we	should,
perhaps,	first	briefly	recap	the	Darwinian	process	of	natural	selection,
because	there	is	so	much	confusion	about	the	relationship	between
evolution	and	natural	selection.	Evolution	is	a	fact,	a	process	seen	at

work	both	in	living	organisms	today	and	in	the	fossil	record.16	In	the
same	way,	the	way	apples	fall	from	trees	and	the	Moon	orbits	around	the
Earth	are	facts.	The	movement	of	apples	and	the	Moon	(and	other
things)	is	described	by	a	theory	of	gravity	–	Newton’s	theory	is	adequate
for	most	human	purposes,	but	Einstein’s	theory	is	appropriate	if	you	are
dealing	with	extreme	phenomena	such	as	collapsed	stars.	Evolution	is
described	by	a	theory,	Darwin’s	theory	of	natural	selection,	which	is
adequate	for	most	purposes	on	Earth	today,	but	which,	like	Newton’s
theory	of	gravity,	has	been	modified	to	take	account	of	other	things
which	were	unknown	to	its	originator.	Darwin’s	theory	is	to	evolution
what	Newton’s	theory	is	to	gravity,	but	we	do	not	yet	have	an
evolutionary	equivalent	of	Einstein’s	theory	of	gravity,	a	complete
theory	of	evolution	going	beyond	Darwin’s	theory	to	incorporate	all	the
facts	known	today,	although	various	suggestions	have	been	made	about
how	Darwin’s	theory	needs	to	be	modified.	The	essence	of	Darwin’s
theory	remains	at	the	core	of	our	understanding	of	evolution.	It	says	that



offspring-resemble	their	parents,	but	imperfectly,	so	that	there	are
variations	from	one	generation	to	the	next	and	among	individuals	in
each	generation.	The	individuals	that	are	best	suited	to	their
environment	(best	‘fitted’,	in	the	sense	of	the	way	a	piece	fits	into	a
jigsaw	puzzle)	do	best	in	terms	of	finding	food,	mating	and	(crucially)
reproducing,	so	they	leave	more	offspring	in	the	next	generation.
Because	those	offspring	resemble	their	parents,	they	will	inherit	the
particular	attributes	that	made	their	parents	successful,	but	perhaps	with
slight	variations.	And	so	on,	in	succeeding	generations.

This	is	a	process	of	natural	selection,	which	selects	the	fittest	(in	the
jigsaw	puzzle	sense,	not	the	athletic	sense,	although	the	two	may	go
together)	in	each	generation.	In	the	classic	example,	if	it	is	an	advantage
to	be	able	to	get	at	juicy	leaves	in	the	tree	tops,	individual	grazers	with
long	necks	will	do	better	in	the	struggle	for	survival	and	raise	more
offspring	while	individuals	with	shorter	necks	will	get	less	food	and	find
it	harder	to	raise	their	offspring.	Provided	that	the	tendency	for	long	or
short	necks	is	inherited,	but	there	are	still	variations	among	individuals
(some	necks	are	longer	or	shorter	than	the	average,	whatever	the
average	may	be),	over	many	generations	the	selection	pressure	favouring
longer	necks	will	lead	to	the	evolution	of	a	creature	like	the	giraffe.
Variety	isn’t	just	the	spice	of	life;	it	is	at	the	very	heart	of	how	life
works.	Darwinian	theory	explains	beautifully	why	species	should	be
superbly	fitted	for	their	ecological	niches,	like	the	fit	of	a	key	in	a	lock.
But	it	is	important	to	appreciate	that	it	also	allows	scope	for	features	to
exist	that	are	evolutionarily	neutral,	in	terms	of	selection,	conferring
neither	an	advantage	nor	a	disadvantage	on	the	individuals	that	possess
them.	These	include	variations	on	a	theme	like	the	stripy	patterns	seen



on	the	shells	of	some	ordinary	garden	snails,	where	individual	members
of	the	same	species	can	look	much	more	different	from	one	another	than
an	individual	burchelli	zebra	does	from	an	individual	grevyi,	even	though
they	are	members	of	different	species.	But	that’s	enough	about	the	basics
of	evolution	to	be	going	on	with.

Following	on	from	Murray’s	work	on	stripes	and	spots	formed	by	the
Turing	mechanism,	many	more	of	nature’s	patterns	have	been
investigated	in	the	same	sort	of	way,	both	by	Murray	and	by	others.	One
of	the	most	relevant	of	these	investigations	to	the	story	we	have	been
telling	was	carried	out	by	Hans	Meinhardt,	who	works	at	the	Max	Planck
Institute	for	Developmental	Biology,	in	Tübingen,	and	his	colleague
André	Koch.	Using	a	similar	approach	to	Murray,	but	based	on	the
mechanism	of	the	BZ	reaction	instead	of	the	Turing	reaction,	they	found
that	in	their	mathematical	model	very	lifelike	patterns	(including	those
corresponding	to	the	spots	on	a	leopard)	could	be	produced	when	the
production	of	an	actuator	is	triggered	at	random	places	on	the	skin	of
the	embryo	at	the	appropriate	moment	during	its	development.	The
advantage	of	this	particular	model	is	that	it	is	able	to	produce	more
complicated	patterns,	even	though	the	underlying	chemistry	is	still	very
simple.	Patterns	on	the	shells	of	marine	creatures	also	match	the	patterns
we	would	expect	to	be	produced	by	some	chemical	processes	involving
actuator	and	inhibitor	compounds,	and	many	biologists	believe	that	they
may	have	found	a	species	where	they	can	see	the	process	at	work.	In	the
angel	fish	Pomacanthus	imperator	the	adult	has	parallel	stripes	which	run
from	head	to	tail	along	the	fish.	As	the	fish	grows,	new	stripes	form	so
that	the	individual	stripes	stay	the	same	size,	but	the	spacing	between
the	stripes	also	stays	the	same.	The	new	stripes	develop	from	forks	in



some	of	the	earlier	stripes,	branching	like	a	single	railway	track	forking
at	a	set	of	points	to	become	two	parallel	tracks.	In	the	1990s,	Shigeru
Kondo	and	Rihito	Asahi,	working	at	Kyoto	University,	developed	a
mathematical	model	which	reproduced	exactly	this	pattern	of	behaviour,
using	the	Turing	mechanism.	This	suggests	that	the	Turing	process	itself
is	still	going	on	in	these	adult	fish,	rather	than	being	a	one-off	event	that
happened	during	embryonic	development,	and	raises	the	hope	that	the
actual	chemicals	involved	in	the	process	might	soon	be	identified.

Similar	models	have	been	used	to	mimic	the	patterns	produced	on
the	wings	of	butterflies,	one	of	many	such	applications,	but	one	we	pick
out	because	of	its	relevance	to	what	is	coming	later.	Murray	studied	the
mechanisms	for	producing	many	features	of	these	wing	patterns,
including	the	formation	of	large	spots	that	bear	a	superficial
resemblance	to	eyes	(these	are	thought	to	be	selected	by	evolution
because	a	predator	taking	a	quick	look	at	the	butterfly	might	see,	not	a
juicy	tit-bit	of	food,	but	the	eyes	of	a	larger	creature	staring	back	at	it).
One	aspect	of	this	work	showed	how	easy	it	is	to	make	such	patterns
from	the	basic	chemistry,	without	any	need	for	a	complicated	blueprint
stored	in	the	genes	of	the	butterfly,	and	therefore	how	likely	it	is	that
such	a	feature	could	indeed	be	selected	by	evolution.	But	in	this
particular	case,	the	model	also	showed	that	a	key	feature	of	the	eyespot
pattern,	its	radius,	changes	gradually	if	the	conditions	under	which	the
relevant	chemistry	is	going	on	change	gradually.	For	example,	butterflies
that	develop	at	one	temperature	will	have	eyespots	of	a	certain	size,
while	butterflies	that	develop	at	another	temperature	will	have	eyespots
of	a	different	size,	and	there	will	be	a	continuous,	smooth	correlation
between	the	size	of	the	spots	and	the	temperature.	This	is	only	worth



commenting	on	because	it	is	not	the	only	pattern	of	behaviour	that	can
result	from	the	kind	of	underlying	chemistry	we	have	been	discussing.	In
some	processes,	small	changes	in	the	environment	in	which	the	reactions
are	taking	place	have	little	effect	until	a	critical	point	is	reached,	and
then	the	process	suddenly	switches	into	a	new	phase	of	operation.	One
example,	cited	by	Murray,	of	a	process	which	is	sensitive	in	this	way,	is
the	development	of	the	vertebrate	limb.	If	the	biochemical	processes
involved	in	the	stage	of	development	where	fingers	are	growing	are
disrupted	slightly,	the	result	is	not	a	slightly	larger	or	smaller	hand,	but
a	hand	with	a	sixth	finger.	This	can	arise	naturally	through	a	mutation	(a
small	change	in	the	DNA	code	of	a	gene,	perhaps	resulting	from	a
copying	error)	which	causes	a	slight	change	in	development;	the	altered
DNA	will	then	be	passed	on	down	the	generations,	unless	the	mutation	is
harmful.	This	is	why	such	traits	tend	to	run	in	families,	including	that	of
Anne	Boleyn,	one	of	the	wives	of	Henry	VIII,	who	was	born	with	six
fingers	on	one	hand,	although	one	was	very	quickly	cut	off.	In	another
example	famous	among	developmental	biologists,	a	Boston	man	had	a
kind	of	double	hand,	with	no	thumb	and	seven	fingers	arranged	in	two
sets,	one	of	three	and	one	of	four,	either	side	of	where	the	thumb	‘ought’
to	have	been.	Similar	structures	can	also	be	produced	by	grafting	cells

from	one	limb	bud	on	to	another.17	And	they	can	be	described
mathematically	by	the	appropriate	models	–	models	which	describe
processes	such	as	the	Turing	mechanism	that	occur	in	dissipative	systems
at	the	edge	of	chaos.	The	point	to	take	hold	of	is	that	sometimes	small
changes	in	the	environment,	or	small	mutations,	can	have	big	effects	on
the	body	form	that	develops.	This	is	one	of	the	relatively	new	things	that
were	unknown	to	Darwin,	and	which	give	us	more	insight	into	how



evolution	works.	But	remember	that	under	other	circumstances	there	is
gradual	change.	As	Murray	says:
Depending	on	the	mechanism	and	the	specific	patterning	feature	we	focus	on,	we	can	have	gradual	or	discontinuous

change	inform	…	it	is	clear	that	to	understand	how	evolution	takes	place	we	must	understand	the	morphogenetic

processes	involved.

In	fact,	this	is	as	far	as	we	wish	to	delve	into	morphogenesis.	All	we
want	to	carry	away	from	this	discussion	is	the	knowledge	that	in
morphogenesis	and	in	evolutionary	biology	sometimes	small	effects
produce	small	changes,	and	sometimes	small	effects	produce	big	changes
–	and	that	this	can	be	understood,	in	principle,	in	terms	of	pattern-
formation	models	involving	very	simple	chemistry.	It	turns	out	that
small,	random	changes	can	also	have	either	big	or	small	effects	in	the
world	at	large,	in	particular	when	we	are	dealing	with	dissipative
systems	at	the	edge	of	chaos	–	and	that	understanding	how	and	why	this
happens	will	help	us	to	a	better	understanding	of	the	emergence	of	both
life	itself	and	intelligence.



5
Earthquakes,	Extinctions	and	Emergence

When	other	people	hear	scientists	refer	to	‘complex	systems’	this
sometimes	‘creates	a	barrier,	since	to	many	people	‘complex’	means
‘complicated’,	and	there	is	an	automatic	assumption	that	if	a	system	is
complicated	it	will	be	difficult	to	understand.	Neither	assumption	is
necessarily	correct.	A	complex	system	is	really	just	a	system	that	is	made
up	of	several	simpler	components	interacting	with	one	another.	As	we
have	seen,	the	great	triumphs	of	science	since	the	time	of	Galileo	and
Newton	have	largely	been	achieved	by	breaking	complex	systems	down
into	their	simple	components	and	studying	the	way	the	simple
components	behave	(if	necessary,	as	a	first	approximation,	taking	the
extra	step	of	pretending	that	the	components	are	even	simpler	than	they
really	are).	In	the	classic	example	of	the	success	of	this	approach	to
understanding	the	world,	much	of	chemistry	can	be	understood	in	terms
of	a	model	in	which	the	simple	components	are	atoms,	and	for	these
purposes	it	scarcely	matters	what	the	nuclei	of	those	atoms	are
composed	of.	Moving	up	a	level,	the	laws	which	describe	the	behaviour
of	carbon	dioxide	gas	trapped	in	a	box	can	be	understood	in	terms	of
roughly	spherical	molecules	bouncing	off	one	another	and	the	walls	of
their	container,	and	it	scarcely	matters	that	each	of	those	molecules	is
made	up	of	one	carbon	atom	and	two	oxygen	atoms	linked	together.
Both	systems	are	complex,	in	the	scientific	sense,	but	easy	to	understand.



Both	systems	are	complex,	in	the	scientific	sense,	but	easy	to	understand.
And	the	other	key	to	understanding,	as	these	examples	highlight,	is
choosing	the	right	simpler	components	to	analyse;	a	good	choice	will
give	you	a	model	with	widespread	applications,	just	as	the	atomic	model
applies	to	all	of	chemistry,	not	just	to	the	chemistry	of	carbon	and
oxygen,	and	the	‘bouncing	ball’	model	of	gases	applies	to	all	gases,	not
just	to	carbon	dioxide.

At	a	more	abstract	level,	the	same	underlying	principle	applies	to
what	mathematicians	choose	to	call	complex	numbers.	The	name	has
frightened	off	many	a	student,	but	complex	numbers	are	really	very
simple,	and	contain	only	two	components,	scarcely	justifying	the	use	of
the	term	‘complex’	at	all.	The	two	components	of	a	complex	number	are
themselves	everyday	numbers,	which	are	distinguished	from	each	other
because	one	of	them	is	multiplied	by	a	universal	constant	labelled	i.	So
whereas	an	everyday	number	can	be	represented	by	a	single	letter	(say,
X),	a	complex	number	is	represented	by	a	pair	of	letters	(say,	A	+	iB).	It
happens	that	i	is	the	square	root	of	-1,	so	that	i	×	i	=-1,	but	that	doesn’t
really	matter.	What	matters	is	that	there	is	a	fairly	simple	set	of	rules
which	tell	you	how	to	manipulate	complex	numbers	–	what	happens
when	you	multiply	one	complex	number	by	another,	or	add	two	of	them
together,	and	so	on.	These	rules	really	are	simple	–	much	simpler,	for
example,	than	the	rules	of	chess.	But	using	them	opens	up	a	whole	new
world	of	mathematics,	which	turns	out	to	have	widespread	applications
in	physics,	for	example	in	describing	the	behaviour	of	alternating
electric	current	and	in	the	wave	equations	of	quantum	mechanics.

But	there’s	a	more	homely	example	of	the	simplicity	of	complexity.
The	two	simplest	‘machines’	of	all	are	the	wheel	and	the	lever.	A	toothed



cogwheel,	like	the	gearwheels	of	a	racing	bicycle,	is	in	effect	a

combination	of	lever	and	wheel.1	A	single	wheel	–	even	a	single
gearwheel	–	is	not	a	complex	object.	But	a	racing	bicycle,	which	is
essentially	just	a	collection	of	wheels	and	levers,	is	a	complex	object,
within	the	scientific	meaning	of	the	term	–	even	though	its	individual
component	parts,	and	the	way	they	interact	with	one	another,	are	easy
to	understand.	And	this	highlights	the	other	important	feature	of
complexity,	as	the	term	is	used	in	science	today	–	the	importance	of	the
way	things	interact	with	one	another.	A	heap	of	wheels	and	levers	would
not	in	itself	be	a	complex	system	even	if	the	heap	consisted	of	all	the
pieces	needed	to	make	a	racing	bike.	The	simple	pieces	have	to	be
connected	together	in	the	right	way,	so	that	they	interact	with	one
another	to	produce	something	that	is	greater	than	the	sum	of	its	parts.
And	that’s	complexity,	founded	upon	deep	simplicity.

When	scientists	are	confronted	by	complexity,	their	instinctive
reaction	is	to	try	to	understand	it	by	looking	at	the	appropriate	simpler
components	and	the	way	they	interact	with	one	another.	Then	they	hope
to	find	a	simple	law	(or	laws)	which	applies	to	the	system	they	are
studying.	If	all	goes	well,	it	will	turn	out	that	this	law	also	applies	to	a
wider	sample	of	complex	systems	(as	with	the	atomic	model	of
chemistry,	or	the	way	the	laws	of	cogwheels	apply	both	to	bicycles	and
chronometers),	and	that	they	have	discovered	a	deep	truth	about	the
way	the	world	works.	The	method	has	worked	for	over	300	years	as	a
guide	to	the	behaviour	of	systems	close	to	equilibrium.	Now	it	is	being
applied	to	dissipative	systems	on	the	edge	of	chaos	–	and	what	better
terrestrial	example	could	there	be	of	a	system	in	which	large	amounts	of
energy	are	dissipated	than	an	earthquake?



One	of	the	most	natural	questions	to	ask	about	earthquakes	is	how
often	earthquakes	of	different	sizes	occur.	Apart	from	its	intrinsic
interest,	this	has	great	practical	relevance	if	you	live	in	an	earthquake
zone,	or	if	you	represent	an	insurance	company	trying	to	decide	what
premiums	to	charge	for	earthquake	insurance.	There	are	lots	of	ways	in
which	earthquakes	might	be	distributed	through	time.	Most	earthquakes
might	be	very	large,	releasing	lots	of	energy	which	then	takes	a	long
time	to	accumulate	once	again.	Or	they	might	all	be	small,	releasing
energy	almost	continuously,	so	that	there	is	never	enough	to	make	a	big
’quake.	There	could	be	some	typical	size	for	an	earthquake,	with	both
bigger	and	smaller	events	relatively	rare	(which	is	the	way	the	heights	of
people	are	distributed,	around	some	average	value).	Or	they	could	be
completely	random.	There	is	no	point	in	guessing;	the	only	way	to	find
out	is	to	look	at	all	the	records	of	earthquake,	and	add	up	how	many	of
each	size	have	occurred.	Appropriately,	the	first	person	to	do	this	was
Charles	Richter	(1900–85),	who	introduced	the	eponymous	scale	now

widely	used	to	measure	the	intensity	of	earthquakes.2

The	Richter	scale	is	logarithmic,	so	that	an	increase	of	one	unit	on
the	scale	corresponds	to	an	increase	in	the	amount	of	energy	released	by
a	factor	of	30;	a	magnitude	2	earthquake	is	30	times	as	powerful	as	a
magnitude	1	earthquake,	a	magnitude	3	earthquake	is	30	times	more
powerful	than	a	magnitude	2	earthquake	(and	therefore	900	times	more
powerful	than	a	magnitude	1	earthquake),	and	so	on.	Although	the	name
attached	to	the	scale	is	Richter’s	alone,	he	worked	it	out,	at	the
beginning	of	the	1930s,	with	his	colleague	Beno	Gutenberg	(1889–
1960),	and	in	the	middle	of	the	1950s	the	same	team	turned	their
attention	to	the	investigation	of	the	frequency	of	earthquakes	of	different



sizes.	The	team	looked	at	records	of	earthquakes	worldwide,	and
combined	them	in	‘bins’	corresponding	to	steps	of	half	a	magnitude	on
the	Richter	scale	–	so	all	the	earthquakes	with	magnitude	between	5	and
5.5	went	in	one	bin,	all	those	between	5.5	and	6	in	the	next	bin,	and	so
on.	Remembering	that	the	Richter	scale	itself	is	logarithmic,	in	order	to
compare	like	with	like	they	then	took	the	logarithm	in	each	of	these

numbers.3	When	they	plotted	a	graph	showing	the	logarithm	of	the
number	of	earthquakes	in	each	bin	in	relation	to	the	magnitude	itself	(a

so-called	‘log-log	plot’4),	they	found	that	it	made	a	straight	line.	There
are	very	many	small	earthquakes,	very	few	large	earthquakes,	and	the
number	in	between	lies,	for	any	magnitude	you	choose,	on	the	straight
line	joining	those	two	extreme	points.	This	means	that	the	number	of
earthquakes	of	each	magnitude	obeys	a	power	law	–	for	every	1,000
earthquakes	of	magnitude	5	there	are	roughly	100	earthquakes	of
magnitude	6,10	earthquakes	of	magnitude	7,	and	so	on.	This	is	now
known	as	the	Gutenberg-Richter	law;	it	is	a	classic	example	of	a	simple
law	underlying	what	looks	at	first	sight	to	be	a	complex	system.	But
what	exactly	does	it	mean,	and	does	it	have	any	widespread
applications?

First,	it’s	worth	stressing	just	how	powerful	a	law	of	nature	this	is.	An
earthquake	of	magnitude	8,	a	little	smaller	than	the	famous	San
Francisco	earthquake	of	1906,	is	20	billion	times	more	energetic	than	an
earthquake	of	magnitude	1,	which	corresponds	to	the	kind	of	tremor	you
feel	indoors	when	a	heavy	lorry	passes	by	in	the	street	outside.	Yet	the
same	simple	law	applies	across	this	vast	range	of	energies.	Clearly,	it	is
telling	us	something	fundamental	about	how	the	world	works.	Part	of
that	something	is	related	to	what	we	learned	about	chaos	and	fractals	in



Chapter	3,	where	power	laws	also	showed	up.	Indeed,	if	you	choose	to,
you	can	take	one	of	the	archetypal	examples	of	a	fractal	in	nature,	the
length	of	a	coastline,	and	express	it	in	just	the	same	way.	A	particularly

fine	example	is	provided	by	the	coast	of	Norway,5	where	large	fjords
branch	into	smaller	fjords,	which	branch	into	smaller	fjords,	and	so	on.
To	describe	this	in	terms	of	the	fractal	dimension	of	the	coastline,	we
imagine	taking	a	very	detailed	map	of	the	coast	(or	even	the	actual
coast!)	and	covering	it	with	a	grid	of	identical	squares.	If	the	square	is
big	enough,	one	will	be	sufficient	to	cover	the	whole	of	Norway.	But	as
you	make	the	squares	smaller,	you	need	more	and	more	of	them	to	cover
every	twisting	inlet	in	the	coastline.	It’s	pretty	obvious	that	if	you	make
the	squares	half	as	big,	you	will	need	more	than	twice	as	many	to	do	the
job.	The	rate	at	which	the	number	of	squares	you	need	increases,
compared	with	the	rate	at	which	the	size	of	each	square	decreases,	gives
you	the	fractal	dimension	of	the	coastline.	In	this	case	the	fractal
dimension	turns	out	to	be	1.52.	You	find	this	by	plotting	the	logarithm
of	the	length	of	coast	measured	at	each	level	(for	each	size	of	square)
against	the	logarithm	of	the	size	of	each	square.	You	get	a	straight	line,
and	the	fractal	dimension	is	the	gradient	slope	of	this	straight	line	graph.



Figure	5.1	The	Gutenberg-Richter	law	relates	the	magnitudes	of	earthquakes	to	the	frequency	with
which	they	occur.	It	is	an	example	of	a	power	law	demonstrating	j	behaviour.

Apart	from	the	size	of	the	gradient	(the	steepness	of	the	line	on	the
graph),	this	is	exactly	the	same	kind	of	power	law	as	the	Gutenberg-
Richter	law.	There	seems	to	be	a	connection	between	the	fractal
geometry	of	the	coast	of	Norway	(and	other	coastlines)	and	the
frequency	with	which	earthquakes	of	different	sizes	occur	worldwide
(and,	indeed,	in	individual	earthquake	zones	around	the	globe).	Part	of
that	connection	lies	in	a	property	of	fractals	that	we	are	already	familiar
with	–	they	are	scale-free.	That	is	why	this	coastline	plot	obeys	a	power
law,	and	what	we	can	infer	is	that	the	occurrence	of	earthquakes	is	also
scale	invariant.	Interesting	though	this	is	in	terms	of	satisfying	our
curiosity,	what	it	means	in	practical	terms	is	that	there	is	essentially	no
difference	between	a	large	earthquake	and	a	small	earthquake	except	for
their	size.	You	do	not	need	to	invoke	some	special,	rare	and	peculiar
physical	effect	in	order	to	explain	why	large	earthquakes	occur	–	they
just	do.	Large	earthquakes	occur	more	rarely	than	small	earthquakes,	but
they	are	produced	by	essentially	the	same	physical	process	as	small
earthquakes	–	and	the	power	law	tells	you	this	even	if	you	have	no	idea
what	that	single	physical	cause	of	earthquakes	is.

Apart	from	the	size	of	the	gradient	(the	steepness	of	the	line	on	the
graph),	this	is	exactly	the	same	kind	of	power	law	as	the	Gutenberg-
Richter	law.	There	seems	to	be	a	connection	between	the	fractal
geometry	of	the	coast	of	Norway	(and	other	coastlines)	and	the
frequency	with	which	earthquakes	of	different	sizes	occur	worldwide
(and,	indeed,	in	individual	earthquake	zones	around	the	globe).	Part	of



that	connection	lies	in	a	property	of	fractals	that	we	are	already	familiar

with	–	they	are	scale-free.	That	is	why	this	coastline	plot	obeys	a	power
law,	and	what	we	can	infer	is	that	the	occurrence	of	earthquakes	is	also
scale	invariant.	Interesting	though	this	is	in	terms	of	satisfying	our
curiosity,	what	it	means	in	practical	terms	is	that	there	is	essentially	no
difference	between	a	large	earthquake	and	a	small	earthquake	except	for
their	size.	You	do	not	need	to	invoke	some	special,	rare	and	peculiar
physical	effect	in	order	to	explain	why	large	earthquakes	occur	–	they
just	do.	Large	earthquakes	occur	more	rarely	than	small	earthquakes,	but
they	are	produced	by	essentially	the	same	physical	process	as	small
earthquakes	–	and	the	power	law	tells	you	this	even	if	you	have	no	idea
what	that	single	physical	cause	of	earthquakes	is.

Figure	5.2a	The	length	of	the	coastline	of	Norway	can	be	estimated	by	covering	it	in	a	grid	of	squares,
as	described	in	the	text.	The	smaller	the	squares,	the	longer	the	measured	coastline.	When	this
relationship	is	plotted	in	a	log-log	graph,	it	produces	a	straight	line,	following	a	power	law	(see	p.	142).
In	this	case,	the	slope	of	the	line	(its	power)	is	a	measure	of	the	fractal	dimension	of	the	coast	of
Norway,	which	turns	out	to	be	1.52,	almost	exactly	midway	between	a	line	(1)	and	an	area	(2).

Figure	5.2b	(See	caption	on	p.	141.)

This	is	quite	different	from	the	idea,	still	widely	held	by	both	lay
people	and	even	some	geologists,	that	large	earthquakes	require	big
triggers.	That	idea	would	suggest	that	large	earthquakes	(like	San



Francisco	in	1906)	occur	after	a	large	amount	of	strain	has	built	up	in

the	Earth’s	crust,	which	then	‘gives’	at	a	weak	point.	One	comforting
implication	of	this	would	be	that	after	one	big	earthquake	you	would
wait	a	long	time	before	the	next	one	struck	in	the	same	place.	The
statistics,	and	the	power	law	in	particular,	say	otherwise.	Both	large	and
small	earthquakes	occur	at	random,	but	(and	this	is	very	important)	with
different	frequencies.	An	earthquake	of	any	size	could	happen	at	any
time	in	an	earthquake	zone,	and	just	as	the	possibility	of	a	tossed	coin
coming	down	heads	is	still	1	in	2	even	if	the	last	three	tosses	have	all
come	down	tails	(assuming	the	coin	is	properly	balanced),	so	the
chances	of	another	earthquake	like	the	event	of	1906	were	no	less	(and
no	more)	in	1907	than	they	were	in	1905.	Power	laws	always	mean	that
the	thing	being	described	by	the	law	is	scale	invariant,	so	that
earthquakes	of	any	size	are	governed	by	exactly	the	same	rules.

There’s	a	nice	example	of	scale	invariance	at	work	in	a	simple
physical	system,	which	is	no	less	apposite	from	being	familiar	from
many	accounts	–	Mark	Buchanan	expresses	it	particularly	neatly	in	his
book	Ubiquity,	where	he	boldly	attempts	to	apply	these	ideas	to	what	he
calls	‘the	true	science	of	history’.	Imagine	an	experiment	in	which	frozen
potatoes	are	fired	against	a	solid	wall	and	shattered	into	pieces.	This
really	has	been	done,	because	the	way	the	frozen	potatoes	break	up	is
very	similar	to	the	way	in	which	lumps	of	rock	break	up	when	they
collide,	and	observations	of	this	shattering	process	can	provide	insight
into,	for	example,	the	way	lumps	of	rock	in	space	collide	with	one
another	and	fragment	to	form	the	asteroids	that	orbit	around	our	Sun	in
a	belt	between	the	orbits	of	Mars	and	Jupiter.	The	fragments	of	potato
come	in	many	different	sizes,	with	lots	of	tiny	pieces,	a	few	large	chunks,



and	some	in	between.	It	is	straight	forward	to	allocate	these	pieces	to
bins,	according	to	how	much	they	weigh,	in	the	way	that	Gutenberg	and
Richter	allocated	earthquakes	into	bins	according	to	their	magnitude.	At
first,	ignore	all	the	really	tiny	fragments,	keeping	them	to	one	side,	and
bin	all	the	rest.	Then	you	can	plot	a	graph	of	the	number	of	fragments	in
each	bin	against	the	weight	corresponding	to	that	bin.	You	get	a	power
law.	Now	you	take	a	look	at	the	tiny	fragments	of	potato	you	ignored
before,	and	use	some	kind	of	finer	technology	to	measure	their	weights
and	divide	them	among	bins	in	the	same	way,	but	on	a	smaller	scale.
You	get	the	same	power	law.	In	experiments	carried	out	at	the
University	of	Southern	Denmark	in	the	early	1990s,	the	researchers
found	that	the	same	power	law	applied	to	chunks	of	potato	analysed	in
this	way	ranging	in	size	from	10	grams	down	to	one-thousandth	of	a
gram.	It	means	that	if	you	were	the	size	of	an	ant,	and	you	crawled
about	among	the	potato	pieces,	the	kind	of	landscape	you	would	see
would	be	exactly	the	same	(statistically)	as	if	you	were	the	size	of	a
ladybird	crawling	about	among	the	debris.	It	would	not	be	like
comparing,	say,	the	rolling	hills	of	Sussex	with	the	spiky	peaks	of	the
Himalayan	mountains.	The	‘landscape’	provided	by	the	potato	pieces
looks	the	same	on	all	scales.

It	happens	that	the	landscape	of	the	Moon	is	also	scale	invariant,	in
terms	of	the	numbers	of	craters	of	different	sizes	that	scar	its	surface.
Since	these	craters	were	produced	by	the	impact	of	different-sized	lumps
of	rock	from	space,	and	those	lumps	of	rock	were	themselves	almost
certainly	produced	by	collisions	between	larger	asteroids	that	break	up
in	accordance	with	the	same	laws	that	govern	the	break-up	of	frozen
potatoes,	this	is	no	real	surprise;	but	it	extends	the	scale	of	this
particular	power	law	up	from	potatoes	to	planetoids.



particular	power	law	up	from	potatoes	to	planetoids.

There’s	another	way	of	describing	all	of	these	kinds	of	variations
(really,	as	we	have	seen,	different	versions	of	the	same	kind	of	variation).
Large	‘events’	(earthquakes,	stretches	of	coastline,	pieces	of	potato)	are
more	rare,	and	you	can	express	this	by	saying	that	the	frequency	of	an
event	is	equal	to	1	divided	by	some	power	of	its	size.	Turning	this
around,	you	can	say	that	the	size	of	an	event	is	proportional	to	1	over
some	power	of	its	frequency,	f;	since	the	exact	power	is	not	particularly
important,	in	general	this	is	called	‘1	over	f	noise’,	and	written	as	
noise.	It	may	seem	a	strange	way	of	talking	about	earthquakes,	but	the
reason	for	doing	so	is	that	 	noise	turns	up	in	naturally	varying	systems
of	many	kinds,	and	had	already	been	studied	mathematically	before
people	like	earthquake	experts	got	in	on	the	act.	For	our	purposes,	the
terms	‘power	law	behaviour’	and	‘ 	noise’	are	synonymous.

This	kind	of	noise	contains	variations	on	all	scales,	ranging	from
rapid	flickering	up	to	slow	pulsation,	all	superimposed	on	one	another.
As	someone	who	trained	in	astronomy,	to	me	the	classic	example	of	
noise	is	the	variation	in	the	light	from	a	quasar,	which	covers	the	range
of	fluctuations	from	flickering	on	a	scale	of	minutes	up	to	pulsations
over	periods	of	years	and	decades;6	the	same	kind	of	pattern	is	seen	in
the	light	from	some	stars.	When	the	flickering	of	such	an	object	is
plotted	out	as	a	graph,	with	brightness	plotted	against	the	time
(astronomers	call	this	a	‘light	curve’),	you	get	a	jagged	line	looking	like
the	profile	of	a	mountain	range,	with	ups	and	downs	occurring	on	all
scales.	This	is	 	noise.	At	one	extreme,	the	direct	contrast	with	 	noise
would	be	what	is	called	white	noise,	which	is	completely	random,	and	at
the	other	extreme	the	contrast	would	be	with	a	pure	signal	containing



just	one	frequency,	like	a	single	musical	note.	As	the	names	suggest,
these	phenomena	were	first	discussed	in	acoustics,	where	the	signals
being	investigated	are	sound	waves;	white	noise	is	the	boring	hiss	of
static	you	get	from	an	AM	radio	tuned	away	from	any	station,	a	single
frequency	‘noise’	would	be	a	pure	(but	equally	boring)	tone	at	one	note,
and	 	noise	(also	sometimes	referred	to	as	pink	noise)	sounds	interesting
to	the	human	ear.	The	sound	of	music	has	a	 	structure,	as	has	the
sound	of	the	spoken	word	(including	the	hubbub	of	noise	at	a	party).	In
a	nutshell,	 	noise	contains	information.

Figure	5.3	Changes	in	the	brightness	of	light	from	a	quasar,	observed	over	the	interval	from	1887	to

1967,	provide	an	example	of	 	noise.

But	a	few	words	of	caution.	Whenever	new	discoveries	are	made	in
science	there	is	a	bandwagon	effect,	with	people	trying	to	explain
everything	in	terms	of	their	new	enthusiasm.	One	over	f	noise	has
become	a	hot	topic	in	science,	and	its	enthusiasts	rightly	use	it	to	probe
everything	they	can,	which	will	either	give	new	insights	or	reveal	the
limitations	of	this	field	(or	both).	But	 	noise	is	clearly	not	the	only
effect	at	work	in	all	time-varying	phenomena	that	he	between	white
noise	and	a	single	frequency.	Take	the	rise	in	global	average



temperatures	that	has	taken	place	since	the	middle	of	the	nineteenth

century,	for	example.	This	looks	very	like	the	kind	of	light	curve	of
interest	in	quasar	astronomy,	with	an	overall	rising	trend	but	many
jagged	peaks	and	valleys.	Analysis	shows	that	these	fluctuations	are,
indeed,	 	noise.	It	could	be	that	the	long-term	rising	trend	is	just	part	of

his	overall	pattern,	a	very	long-term	fluctuation	of	the	noise.	But	in	this
case	the	long-term	trend	has	occurred	exactly	at	the	time	when	human
activities	have	been	releasing	gases	that	trap	heat	into	the	atmosphere,
and	when	the	short-term	fluctuations	are	averaged	out,	the	size	of	this
rise,	over	one	and	a	half	centuries,	exactly	matches	the	warming	that
would	be	expected	from	the	amount	of	these	greenhouse	gases	added	to
the	atmosphere.	To	deny	the	link	between	cause	and	effect	would	make
about	as	much	sense	as	to	deny	that	an	earthquake	that	happened	in	the
Nevada	desert	just	after	a	nuclear	bomb	was	exploded	beneath	the
surface	was	caused	by	the	bomb,	and	to	claim	that	it	was	just	part	of	the
background	 	noise.

Figure	5.4	Using	the	standard	log-log	graph,	classical	music,	rock	and	the	spoken	word	all	display	the

characteristics	of	 	noise,	because	they	all	contain	information.



The	conclusion	is	that	although	there	is	a	lot	of	noise	in	the	weather
system,	and	this	is	largely	 	noise	(which	is	an	interesting	and	important
discovery	in	itself),	there	is	also	a	genuine	upward	trend	in	temperature
linked	to	human	activities.	The	particularly	interesting	thing	about	the
fact	that	the	noise	in	the	weather	system	is	 	noise	is,	of	course,	the
same	as	the	interesting	thing	about	earthquakes	obeying	a	power	law.	It
means	that	events	of	any	size	can	happen	at	any	time,	but	that	big
events	(in	this	case,	big	departures	from	average	temperature)	are	rare.
Traditionally,	insurance	companies	and	civic	planners	have	worked	out
the	odds	against	extreme	events	on	an	historical	basis.	They	look	at	how
often	a	particular	type	and	size	of	event	(say,	a	severe	drought)	has
occurred	in	the	past,	and	guess	that	it	will	happen	with	the	same
frequency	in	future.	They	even	talk	about	things	like	a	‘once	in	a
hundred	years’	drought.	But	this	is	only	half	the	story.	The	 	signal	tells
us	that	such	events	actually	obey	a	power	law.	And	that	means	that	if
you	get	a	‘once	in	a	hundred	years’	drought	one	summer,	the	odds	of
getting	a	second	drought	of	the	same	severity	the	following	year	are
exactly	the	same	as	if	there	had	not	been	a	drought	that	year.	It	is	not
safe	to	assume	that	after	one	‘once	in	a	hundred	years’	drought	it	will	be
a	hundred	years	before	the	next	one	happens.	Equally,	though,	 	noise
implies	that	a	record-breaking	drought	could	be	followed	by	a	record-
breaking	freeze.	Next	year	might	be	the	coldest	ever	recorded,	without
this	in	any	way	invalidating	the	greenhouse	effect	hypothesis,	thanks	to
a	random	fluctuation	of	the	natural	weather	system.	That	is	why	it	is	so
important	to	look	at	long-term	trends,	not	just	one-off	events.

There	are	many	other	examples	of	power	laws	and	 	noise	in	nature,
and	no	need	to	catalogue	them	all	here.	But	there	are	two	that	we	would



like	to	mention,	before	we	get	on	to	our	main	theme	of	the	relevance	of
all	this	to	the	emergence	of	life,	since	they	strike	much	closer	to	home
than	things	like	the	light	curves	of	quasars	and	the	statistics	of	long-term
temperature	trends.	Most	of	the	readers	of	this	book	will	have	lived	in	a
large	town	or	city	at	some	time	in	their	life,	even	if	they	do	not	now.
Way	back	in	the	1940s,	George	Zipf	of	Harvard	University	studied	the
populations	of	cities	around	the	world.	Pretty	obviously,	there	are	a	few
cities	with	very	large	populations,	and	many	more	cities	with	smaller
populations.	Rather	less	obviously	at	the	time	(although	you	have
probably	guessed	what	is	coming),	when	the	number	of	cities	with	each
population	is	binned	and	plotted	against	the	population	on	a	log-log
graph,	you	get	a	straight	line.	Both	for	the	world	as	a	whole	and	for
different	regions	of	the	globe,	the	way	people	congregate	in	cities	obeys
a	power	law	–	and	the	same	pattern	is	as	true	today	as	it	was	in	the
1940s.	We	all	make	our	decisions	about	where	to	live	independently,
exercising	free	will;	yet	somehow	we	are	subject	to	the	same	laws	that
govern	the	flickering	light	of	quasars	and	the	occurrence	of	earthquakes.
Clearly,	we	are	on	the	trail	of	a	deep	truth;	and	we	can	begin	to
understand	what	is	going	on	by	looking	at	simpler	systems,	starting	with
one	that	also	involves	people.

Although	many	people	live	in	cities,	not	all	cities	are	affected	by
earthquakes,	which	remain	an	abstract	phenomenon	for	most	of	us;	but
everyone	who	lives	in	a	city	has	experienced	a	traffic	jam,	and	traffic
jams,	it	turns	out,	also	obey	a	power	law.	The	kind	of	traffic	jams	we	are
talking	about	are	the	ones	that	occur	on	the	open	highway,	on
unobstructed	dual-carriageway	roads,	seemingly	for	no	reason	at	all.	Any
driver	(indeed,	any	passenger	who	isn’t	asleep)	knows	that	when	the



traffic	is	light	it	flows	along	smoothly,	but	that	once	the	amount	of
traffic	on	the	road	gets	too	great,	traffic	jams	occur	even	though	there
seems	to	be	no	reason	why	everybody	cannot	move	along	smoothly	at,
say,	fifty	miles	an	hour.	The	problem	is	that	if	one	vehicle	brakes	for	any
reason	(perhaps	because	the	driver	has	simply	got	too	close	to	the
vehicle	in	front),	there	is	a	knock-on	effect	as	everybody	behind	slows,
and	it	is	(fortunately	for	road	safety)	easier	to	slow	down	than	it	is	to
speed	up.	This	kind	of	behaviour	has	been	studied	by	researchers	at	the
University	of	Duisberg,	who,	in	the	early	1990s,	developed	a	computer

model	to	put	it	on	a	mathematical	footing.7	The	model	doesn’t	purport
to	describe	the	real	world	of	multilane	highways,	but	(like	all	good
models)	is	sufficient	to	give	an	insight	into	what	is	going	on.	In	the
model	there	is	just	one	line	of	vehicles	moving	down	a	single-track	road,
with	no	overtaking.	All	vehicles	(‘cars’)	are	the	same	size,	and	the	speed
of	a	car	is	specified	in	terms	of	how	many	car	lengths	it	can	move
between	one	step	in	the	computer	simulation	and	the	next.	If	a	car	is
moving	so	fast	that	it	will	hit	the	car	in	front	it	has	to	slow	down;	if
there	is	a	large	gap,	it	will	speed	up	(up	to	a	specified	speed	limit)	to
close	on	the	car	in	front.	Finally,	the	ability	to	slow	down	and	speed	up
is	quantified,	with	it	being	easier	to	brake	than	to	accelerate.	All	the
model	has	is	a	line	of	cars	in	a	row	travelling	in	a	straight	line	and
obeying	these	rules.	Yet	it	shows	all	the	behaviour	of	real	traffic	jams,
with	freely	flowing	cars	when	traffic	is	light,	some	traffic	jams	when
traffic	is	heavy,	and	more	or	less	gridlock	once	a	certain	density	of
vehicles	is	reached.	What’s	more,	both	in	the	models	and	in	studies	of
real	traffic	flows	we	find	a	power	law	–	the	number	of	jams	of	different
sizes	(measured	in	terms	of	the	number	of	vehicles	involved)	obeys	the



same	kind	of	law	as	the	number	of	earthquakes	of	different	sizes.	Just
like	real	traffic	jams,	the	jams	in	the	model	move	backwards	through	the
traffic,	as	more	cars	brake	behind	the	obstruction	while	those	in	front
speed	away,	and	just	like	real	traffic	jams	they	‘dissolve’	as	the	average
speed	of	the	traffic	is	slowed	by	the	jam.	As	well	as	there	being	big	jams
and	small	jams,	there	are	jams	within	jams,	in	a	fractal	pattern.	It	is	all	a
clearcut	example	of	 	noise	at	work.

There	are	two	practical	lessons	to	be	drawn.	First,	you	don’t	need	an
unusually	large	‘trigger’	(such	as	a	crash)	to	cause	a	large	jam;8	any	size
jam	can	be	triggered	by	even	the	smallest	disturbance,	such	as	one	car
getting	too	close	to	the	car	in	front	and	braking	sharply.	Nobody	ever
hits	anybody,	there	is	no	obvious	cause	visible	to	most	of	the	people
involved	(and	the	car	that	did	cause	the	jam	has	probably	sped	off	into
the	distance,	its	driver	unaware	of	what	is	happening	behind),	but
hundreds	of	people	may	be	inconvenienced.	Secondly,	if	the	density	of
traffic	increases,	it	can	be	kept	flowing	more	freely	by	limiting	its	top
speed,	because	this	reduces	the	impact	of	the	difference	between	the
time	taken	to	accelerate	and	the	time	taken	to	brake.	It	really	is	true	that
if	everyone	obeys	the	speed	limits	on	crowded	motorways	they	will	all
get	to	their	destination	sooner	than	if	they	try	to	drive	faster.

There’s	another	area	of	human	activities	where	power	laws	and	
noise	may	be	relevant,	which	has	received	a	great	deal	of	attention
recently.	This	is	economics,	and	in	particular	the	economics	of	the	stock
market.	We	don’t	wish	to	go	into	this	in	any	detail,	because	it	would
take	us	too	far	from	our	main	theme	of	the	emergence	of	life	and	its
place	in	the	Universe.9	But	the	link	is	certainly	worth	a	mention.	In	the
1960s,	shortly	before	he	turned	his	attention	to	fractals,	Benoit



Mandelbrot	looked	at	the	way	the	prices	of	commodities	such	as	steel
and	cotton	had	varied	on	the	New	York	stock	exchange,	and	found	that
the	price	fluctuations	follow	a	power	law,	like	 	noise.	The	implication
is	that	the	economy	is	a	system	that	follows	the	same	laws	as	the
occurrence	of	earthquakes	(or	traffic	jams),	and	that	large	events	(in	this
case,	things	like	stock	market	crashes,	such	as	the	crash	of	October
1987)	can	happen	out	of	the	blue,	as	a	consequence	of	small	triggers.
This	was	not	a	discovery	welcomed	by	economists,	who	like	to	think	that
economies	can	be	controlled	by	government	action,	for	example	by
adjusting	interest	rates.	But	if	stock	market	fluctuations	really	do	follow
a	power	law,	a	small	adjustment	of	interest	rates	could	(if	only	rarely)	be
the	trigger	for	a	large	swing	in	the	market,	or	might	have	no	effect	at	all.

The	point	to	bear	in	mind,	though,	is	the	same	one	that	applies	to
earthquakes,	traffic	jams	and	the	like.	Overall	the	pattern	may	be	
noise,	but	sometimes	human	intervention	on	a	large	enough	scale	will
have	an	effect	–	there	is	little	doubt,	for	example,	that	the	Second	World
War	provided	a	boost	to	the	US	economy	that	pulled	it	out	of	depression.
The	question	is,	where	between	a	 	per	cent	adjustment	in	interest	rates
and	a	world	war	does	government	intervention	become	important?

Part	of	the	answer	to	that	question	probably	lies	in	work	largely
stimulated	by	the	Irish-born	Brian	Arthur,	working	first	(in	the	late
1970s)	at	the	International	Institute	for	Applied	Systems	Analysis
(IIASA),	a	think-tank	based	in	Austria,	and	later	(in	the	1980s)	at
Stanford	University.	Classical	economics	is	based	on	principles	very
similar	to	those	of	classical	thermodynamics,	and	deals	with	systems
(economies)	that	are	close	to	equilibrium.	This	involves	a	concept	known
as	‘diminishing	returns’,	which	is	a	form	of	negative	feedback.	Crudely
speaking,	it	says	that	although	you	might	make	a	fortune	by	inventing



speaking,	it	says	that	although	you	might	make	a	fortune	by	inventing
something	new	and	selling	it,	once	everyone	has	it	it	becomes	harder	to
sell	any	more	and	your	profits	decline.	Arthur,	who	had	a	background	in
engineering,	realized	that	the	opposite	could	be	the	case	–	that	you
could	have	positive	feedback,	or	increasing	returns.	Once	you	corner	the
market,	everybody	has	to	buy	your	product,	and	you	make	huge	piles	of
money	–	the	obvious	example	today	is	provided	by	Bill	Gates	and
Microsoft.	And	Arthur	realized	that	you	don’t	even	have	to	have	the	best
product.	Apple	computers,	it	is	widely	acknowledged,	are	technically
superior	to	PCs	based	on	the	Microsoft	architecture	(this	was	certainly
true	in	the	1980s).	But	they	were	not	marketed	so	effectively	at	first,	and
if	something	becomes	an	industry	standard,	the	‘me	too’	effect	ensures
that	it	generates	huge	sales,	and	huge	profits.

All	of	this	makes	perfect	sense	to	an	engineer	or	a	physicist,	but
classically	trained	economists	are	still	fighting	a	desperate	rearguard
action	against	such	heretical	ideas.	We	are	not	concerned	with	that
debate	now,	but	in	developing	the	analogy	between	the	way	classical
thermodynamics	differs	from	non-equilibrium	thermodynamics,	and	the
way	classical	economics	differs	from	what	we	might	as	well	call	non-
equilibrium	economics.	Modern	economists	like	Arthur	are	dealing	with
dynamic,	changing	systems,	in	which	positive	feedbacks	are	involved
and	through	which	a	form	of	energy	(in	this	case,	money)	flows.	Put	like
that,	the	story	is	familiar.	Thanks	to	feedback	in	particular,	economies
are	actually	self-organizing	systems	on	the	edge	of	chaos,	with	all	that
that	implies.	The	situation	is	just	rather	more	complicated,	and	it	is
harder	to	see	the	wood	for	the	trees,	because	we	are	on	the	inside	of	the
economy	looking	out,	and	human	beings	are	an	integral	part	of	the



system	they	are	trying	to	analyse.	Nevertheless,	even	at	the	simplest
level	there	is	no	room	to	doubt	that	stock	market	fluctuations	behave	as	
	noise,	and	anyone	who	believes	that	governments	are	in	control	of
economies	is	living	in	cloud-cuckoo-land.

But	let’s	get	back	to	simpler	things	–	things	like	the	death	of	the

dinosaurs,	and	the	meaning	of	life.	The	dinosaurs	died	out10	about	65
million	years	ago,	as	part	of	a	mass	extinction	of	life	on	Earth	so	clearcut
in	the	geological	record	that	it	is	used	to	mark	the	end	of	one	period	of
geological	time,	the	Cretaceous,	and	the	beginning	of	another,	the
Tertiary.	Because	the	initial	‘C’	has	already	been	used	in	a	similar
context	in	connection	with	the	Cambrian	period,	this	marker	is	usually
referred	to	as	the	K-T	boundary,	from	Kreide,	the	German	name	for	the
period.	It	wasn’t	just	the	dinosaurs	that	were	affected,	although	they	are
the	ones	that	feature	most	strongly	in	popular	accounts	of	the	disaster.
About	70	per	cent	of	all	species	alive	on	Earth	at	the	end	of	the
Cretaceous	had	disappeared	at	the	beginning	of	the	Tertiary,	making	this
truly	a	‘mass’	extinction	and	explaining	why	geologists	and
palaeontologists	use	the	K-T	boundary	as	a	major	marker	in	the	fossil
record.	Given	the	difficulties	of	interpreting	evidence	from	that	long	ago,
and	the	slowness	with	which	geological	strata	accumulate,	all	we	can
really	say	about	the	speed	of	the	extinction	is	that	it	took	place	in	less
than	a	few	tens	of	thousand	or	a	hundred	thousand	years,	not	spread
over	many	millions	of	years;	but	that	counts	as	an	abrupt	change	in
terms	of	the	geological	timescale.

The	obvious	questions	this	raises	are	the	same	as	the	obvious
questions	following	a	big	earthquake	–	why	did	it	happen,	could	it
happen	again,	and	if	so,	when?	In	the	case	of	the	K–T	event,	there	is	a



very	good	candidate	for	the	trigger	which	caused	the	extinction	to	occur
65	million	years	(Myr)	ago,	rather	than,	say,	60	Myr	ago	or	55	Myr	ago.
The	remains	of	a	huge-impact	crater	with	just	the	right	age	have	been
discovered	beneath	what	is	now	the	Yucatan	Peninsula	of	Mexico,	and
65	Myr-old	strata	from	around	the	world	contain	traces	of	the	heavy
metal	iridium,	which	is	rare	in	the	crust	of	the	Earth	but	is	known	to	be
a	component	of	some	kinds	of	meteorite.	The	implication	is	that	a
largish	rock	from	space,	perhaps	10	kilometres	across,	struck	the	Earth
and	caused	worldwide	devastation.	The	layer	of	iridium	is	so	thin	that	it
must	have	been	laid	down	in	less	than	10,000	years	(maybe	much	less),
consistent	with	the	idea	that	the	whole	K-T	event	was	triggered	more	or
less	instantaneously	by	a	blow	from	space.

There	is	no	trouble	explaining	how	this	could	have	happened.	The
kinetic	energy	involved	in	such	an	impact	would	be	equivalent	to	the
explosion	of	about	a	thousand	million	megatonnes	of	TNT,	throwing
debris	into	space	in	the	form	of	large	lumps	which	would	travel	on
ballistic	trajectories	(just	like	Intercontinental	Ballistic	Missiles)	and	re-
enter	the	atmosphere	all	around	the	globe,	spreading	heat	worldwide
and	raising	the	temperature	everywhere.	There	would	be	a	heating	effect
of	10	kilowatts	for	every	square	metre	of	the	Earth’s	surface	for	several
hours,	graphically	described	by	Jay	Melosh	of	the	University	of	Arizona

as	‘comparable	to	that	of	a	domestic	oven	set	at	“broil”	’.11	Following
that,	tiny	particles	of	dust	thrown	into	the	upper	atmosphere	would
spread	around	the	globe	and,	combined	with	smoke	from	all	the	fires
started	by	the	‘broiling’,	block	out	sunlight,	causing	plants	that	depend
on	photosynthesis	to	die,	and	temporarily	freezing	the	planet.	There	is
no	need	to	go	into	more	detail	here,	although	it	is	worth	emphasizing



that	the	whole	scenario	has	been	carefully	worked	out	and	set	in	its
geological	context,	and	is	not	some	flaky	half-baked	idea;	that	said,	all
we	want	to	do	is	to	make	the	point	that	impacts	from	space	can	be	bad

news	for	life	on	Earth.12	But	this	is	not	the	whole	story.	First,	there	is
evidence	that	on	other	occasions,	notably	some	35	Myr	ago,	the	Earth
has	been	struck	by	comparable	impacts	from	space	without	there	being
an	extinction	on	the	scale	of	the	K-T	event.	The	same	size	triggers	do	not
all	cause	the	same	size	events.	Secondly,	there	is	also	some	evidence	that
the	dinosaurs	and	other	species	were	already	in	decline	in	the	last	couple
of	million	years	of	the	Cretaceous.	Palaeontologists	still	argue	about	the
interpretation	of	this	evidence,	and	it	is	far	from	clear	that	this	would
have	been	a	terminal	decline	(the	dinosaurs	had	experienced	several	ups
and	downs	during	the	150	million	years	in	which	they	roamed	the
Earth),	while	some	say	that	they	were	not	in	decline	at	all.	But	it	is
certainly	possible	that	the	Yucatan	impact	(which	definitely	did	happen
65	Myr	ago,	at	the	K-T	boundary)	may	have	been	a	‘last	straw’	which
triggered	widespread	extinctions	among	a	web	of	life	on	Earth	which
was	already	under	stress	for	other	reasons	(such	as,	perhaps,	climate
change	caused	by	continental	drift).	The	point	is	that	any	single	event
might	be	a	special	case,	and	doesn’t	on	its	own	tell	you	anything	much
about	the	underlying	cause	of	similar	events,	or	likelihood	of	their
recurrence,	any	more	than	studying	a	single	earthquake	tells	you	much
about	earthquakes	in	general	and	how	often	they	occur.	We	need	to	look
at	the	patterns	of	extinctions	throughout	geological	history	in	order	to
get	a	proper	feel	for	what	is	going	on,	and	to	find	out	whether	the	death
of	the	dinosaurs	was	a	special	event	or	just	one	of	those	things.

The	K-T	event	is	actually	just	one	of	five	similar	catastrophes	(as	far



as	life	on	Earth	at	the	time	was	concerned)	which	are	together	referred
to	by	geologists	as	the	‘Big	Five’	–	and	it	is	by	no	means	the	biggest.
Each	is	used	as	a	marker	between	geological	periods,	and	they	have	all
occurred	during	the	past	600	million	years.	The	reason	for	this	focus	on
the	relatively	recent	geological	past	is	that	it	was	only	around	that	time
that	living	creatures	first	developed	features,	such	as	shells,	which	could
be	easily	fossilized,	leaving	traces	that	can	be	recognized	in	strata
studied	today.	Before	that	time	(in	the	long	geological	era	known	as	the
Precambrian)	life	flourished	in	the	oceans	for	almost	four	billion	years,
in	the	form	of	soft-bodied,	single-celled	creatures	that	left	us	little	to
study.	But	around	600-590	million	years	ago,	at	the	beginning	of	the
geological	period	known	as	the	Cambrian	(hence,	Precambrian;	the
Cambrian	is	the	first	Period	of	the	Palaeozoic	Era),	there	was	an
explosion	of	life	into	different	varieties	as	multicellular	forms,	and	then
living	creatures	with	hard	bits	evolved.	Fairly	obviously,	we	know	more
and	more	about	the	changing	patterns	of	life	on	Earth	the	closer	we
come	to	the	present	day,	and	the	kind	of	knowledge	we	are	interested	in
here,	involving	large	extinctions	of	life,	only	begins	to	become	clear	after
the	end	of	the	Precambrian.

Taking	them	chronologically,	the	Big	Five	extinctions	occurred	about
440	million	years	ago	(marking	the	boundary	between	the	Ordovician
and	Silurian	periods),	360	Myr	ago	(between	the	Devonian	and	the
Carboniferous),	250	Myr	ago	(between	the	Permian	and	the	Triassic),
215	Myr	ago	(at	the	Triassic-Jurassic	boundary)	and	65	Myr	ago	(at	the
K-T	boundary).	There	are	plenty	of	other	extinctions	in	the	fossil	record,
and	they	are	also	often	used	as	markers	in	the	geological	‘calendar’	–	for
example,	the	boundary	between	the	Jurassic	and	the	Cretaceous,	some
145	Myr	ago,	is	also	defined	by	an	extinction.	But	these	five	are	the



145	Myr	ago,	is	also	defined	by	an	extinction.	But	these	five	are	the
biggest.	The	biggest	of	them	all	is	the	event	that	occurred	about	250	Myr
ago,	at	the	end	of	the	Permian.	It	wiped	out	at	least	80	per	cent	and
possibly	as	much	as	95	per	cent	of	all	species	alive	on	Earth	at	the	time,
both	on	land	and	in	the	oceans,	and	it	did	so	within	a	span	of	less	than
10,000	years.	Altogether	it	is	estimated	that	just	over	a	third	of	all	the
species	that	have	ever	lived	on	Earth	have	died	out	in	mass	extinctions.
But	since	it	is	also	estimated	that	99	per	cent	of	all	species	that	ever
lived	on	Earth	have	gone	extinct,	that	means	twice	as	many	have
disappeared	in	lesser	events.	The	intriguing	question	is	whether	the	mass
extinctions	really	are	special	events,	different	in	character	from	the
lesser	extinctions,	or	whether	they	are	the	same	kind	of	event	writ	large
–	are	extinctions	of	life	on	Earth,	like	earthquakes	and	all	those	other
phenomena	we	have	discussed,	scale	free?	The	honest	answer	is	‘we
don’t	know’.	But	there	is	enough	evidence	around	to	suggest	that	this	is
a	very	real	possibility.

Most	of	this	evidence	is	thanks	to	the	painstaking	work	of	Jack
Sepkoski	of	the	University	of	Chicago.	He	has	put	together	a	huge
database	on	extinctions,	combining	information	on	thousands	and
thousands	of	different	species	from	the	published	records	of	other
researchers	available	(to	anyone	with	the	patience	to	carry	out	the	task)
in	a	good	scientific	library.	Of	course,	there’s	a	little	more	to	it	than	that.
You	have	to	know	the	species	you	are	studying	well	(Sepkoski	focused
on	marine	invertebrates),	and	you	have	to	have	the	nous	to	distinguish
real	extinctions	from	gaps	caused	by	the	difficulty	of	obtaining	fossil
remains,	while	also	making	allowance	for	the	fact	that	it	is	easier	to	find
remains	from	more	recent	strata,	and	so	on.	After	all	this	work,	Sepkoski
was	able	to	plot	a	graph	showing	how	the	level	of	extinctions	occurring



was	able	to	plot	a	graph	showing	how	the	level	of	extinctions	occurring
in	each	four-million-year-long	interval	has	fluctuated	over	the	past	600
million	years.	The	overall	fluctuations	of	the	graph	look	fairly	random,
with	long	intervals	of	relatively	little	variation,	just	a	few	species	going
extinct	from	time	to	time,	punctuated	by	dramatic	events	in	which	large
numbers	of	extinctions	occur	–	the	mass	extinctions	we	have	already
met.

Figure	5.5	Jack	Sepkoski’s	data	plotted	as	a	histogram	to	show	the	number	of	intervals,	each	four
million	years	long,	during	which	the	indicated	amount	of	extinction	occurred.	Just	over	90	per	cent	of
the	extinctions	occur	in	just	under	50	per	cent	of	the	intervals.	This	is	not	a	uniform	distribution.

The	percentages	on	the	plot	shown	here,	taken	from	a	paper	by
Sepkoski	published	in	1993,	do	not	precisely	match	the	percentages
mentioned	earlier	because	they	refer	to	families,	not	species,	and	to	only
some	families	(the	marine	invertebrates),	not	all	life	on	Earth;	but	the
match	is	still	pretty	good,	and	shows,	for	example,	that	the	‘death	of	the
dinosaurs’	was	also	the	‘death	of	the	marine	invertebrates’.	The	question
is,	what	kind	of	randomness	is	this,	if	it	really	is	random?	It	turns	out	to



be	a	power	law	–	our	old	friend,	 	noise.	One	of	the	demonstrations	of
this	was	made	by	David	Raup,	who	also	worked	at	the	University	of
Chicago,	and	‘binned’	Sepkoski’s	data	in	the	usual	way,	adding	up	the
number	of	4-Myr	intervals	in	which	up	to	10	per	cent	of	the	relevant
genera	went	extinct,	the	number	of	4-Myr	intervals	in	which	between	10
and	20	per	cent	of	the	genera	went	extinct,	and	so	on.	The	resulting
histogram	looks	just	like	the	equivalent	histogram	for	earthquakes.	Raup
has	also	analysed	the	evidence	in	the	form	of	a	histogram	in	which	the
life	span	of	a	genus	revealed	in	the	fossil	record	is	compared	with	the
number	of	genera	having	that	life	span.	Again,	the	pattern	obeys	a

power	law.13	Exactly	the	same	pattern	has	since	been	found	in	a	much
larger	fossil	database,	analysed	by	Michael	Boulter	of	the	University	of
East	London,	and	his	colleagues.

Now,	it	doesn’t	seem	likely	that	all	extinctions	of	life	on	Earth	have
been	caused	by	impacts	from	space.	What	the	fossil	record	seems	to	be
telling	us	is	that	extinctions	happen	on	all	scales,	all	the	time,	and	that
(like	earthquakes)	an	extinction	of	any	size	can	happen	at	any	time.
Some	extinctions	might	be	triggered	by	meteorite	impacts;	some	might
be	triggered	by	Ice	Ages.	But	the	other	lesson	from	what	we	know	about
power	laws	and	 	noise	is	that	you	do	not	need	a	large	trigger	in	order
to	set	off	a	large	event.	An	extinction	of	any	size	might	be	set	off	by	a
trigger	of	any	size.	What	matters	is	that	we	are	dealing	with	a	complex
system	–	life	on	Earth	–	which	is	self-organizing,	feeding	off	a	flow	of
energy,	and	exists	at	the	edge	of	chaos.	We	are	almost	ready	to	focus
down	on	what	all	this	means	for	life	itself.	But	there	is	one	last	step	that
will	prove	an	important	aid	to	understanding	the	emergence	and
evolution	of	life.	In	the	best	scientific	tradition,	having	found	a	universal



law	–	the	power	law	–	that	applies	to	a	wide	category	of	complicated
(and	complex)	situations,	we	want	to	strip	away	everything	except	the
essentials,	and	look	deep	to	find	a	simple	model	which	goes	to	the	heart
of	the	story	and	can	be	used	to	provide	insight	into	the	mystery	of
complex	systems	that	are	built	on	this	deep	simplicity.	Just	as	insight
into	the	complexities	of	gravity	starts	with	understanding	the	simplest
gravitating	system,	a	single	object	in	orbit	around	another	object,	before
moving	upward	to	provide	insight	into	the	workings	of	the	Solar	System
and	the	way	galaxies	move	in	the	Universe	at	large,	so,	it	turns	out,
insight	into	the	complexities	of	the	web	of	life	can	start	with	studies	of	a
much	simpler	system	–	a	pile	of	sand	sitting	on	a	table.

Figure	5.6a	David	Raup’s	presentation	of	the	number	of	genera	which	survive	for	a	particular	lifetime,
plotted	as	a	histogram	and	as	a	log–log	graph	(see	p.	157).	Lifetimes	of	genera	obey	a	power	law,	with
power	close	to	2.



Figure	5.6b	(See	caption	on	p.	156).

In	the	second	half	of	the	1980s,	the	Danish-born	physicist	Per	Bak,
then	working	at	the	Brookhaven	National	Laboratory	on	Long	Island,
New	York,	became	interested	in	the	complex	behaviour	of	systems	on

the	edge	of	chaos.14	He	came	at	this	interest	through	his	work	in
fundamental	physics,	the	details	of	which	need	not	concern	us	here,	but
soon	appreciated	that	he	was	dealing	with	a	phenomenon	of	very	broad,
if	not	universal,	importance.	Bak	realized	that	power	laws	and	 	noise
are	always	associated	with	large	systems	that	are	made	up	of	many

component	parts15	–	what	we	have	been	calling	complex	systems.	He
also	appreciated,	of	course,	the	importance	of	the	systems	being	open,
with	energy	supplied	from	outside,	if	they	were	to	arrive	at	the	edge	of
chaos,	a	state	that	came	to	be	known	as	self-organized	criticality.	As
Bak’s	interest	grew,	he	began	to	look	for	such	systems	outside	the	world
of	fundamental	physics,	and	became	aware	of	things	like	the	Gutenberg-
Richter	law	for	earthquakes	and	Zipf’s	work	on	city	sizes.	The	instinctive
response	of	a	physicist	to	the	realization	that	a	general	law	is	at	work	is
to	find	a	simple	model	to	describe	what	is	going	on,	and,	working	with
two	younger	colleagues	(Chao	Tang	and	Kurt	Wiesenfeld),	Bak	came	up
with	the	now-famous	sandpile	model.

At	first,	this	was	just	a	conceptual	model,	which	could	be	described
in	words	and	modelled	on	a	computer,	but	did	not	involve	real	piles	of
sand	–	that	came	later.	The	key	to	the	model,	and	to	the	insight	it
provides	into	the	behaviour	of	complex	systems,	lies	in	the	difference
between	a	pile	of	sand	sitting	quietly	on	a	table	in	equilibrium	(just
about	as	boring	as	the	equilibrium	systems	of	classical	thermodynamics)



and	the	same	pile	of	sand,	sitting	on	the	same	table,	on	to	which	new

grains	of	sand	are	being	dropped,	one	at	a	time.16	Our	everyday

experience,	and	memories	of	playing	on	the	beach,	tell	us	in	outline
what	will	happen.	The	sand	will	pile	up	in	a	heap,	until	the	slope	of	the
heap	reaches	some	critical	value.	Then,	adding	more	sand	will	cause	a
landslide,	or	a	series	of	landslides,	making	the	sandpile	slump	down.
Adding	more	sand	makes	the	process	repeat,	until	sand	covers	the	entire
table	and	dribbles	over	the	edge	when	landslides	occur.	In	this	state,	on
average	the	amount	of	sand	in	the	pile	stays	the	same,	with	the	same
amount	falling	off	the	edge	of	the	table	as	is	being	added	from	above.
The	system	is	in	a	state	of	self-organized	criticality,	feeding	off	a	flow	of
energy	carried	by	the	new	sand	grains	being	dropped	on	to	the	pile.	And,
just	as	in	the	way	real	earthquakes	of	any	size	can	be	triggered	by
stimuli	of	the	same	size,	adding	a	single	grain	of	sand	may	cause	one
large	avalanche,	or	a	series	of	small	avalanches,	or	just	leave	the	new
grain	of	sand	delicately	balanced	on	the	pile.	But	the	pile	always	remains
close	to	critical.

Bak	and	Tang	built	on	this	idea	to	provide	a	clue	to	the	workings	of
earthquakes	and	the	relevance	of	the	power	law.	They	developed	a
computer	model	simulating	the	behaviour	of	an	earthquake	zone	like	the
San	Andreas	Fault,	where	two	blocks	of	the	Earth’s	crust	are	sliding	past
one	another	in	a	stop/go	fashion.	As	we	have	mentioned,	the	traditional
model	of	earthquakes	said	that	when	the	fault	sticks,	strain	builds	up
until	a	lot	of	energy	is	released	in	one	go,	essentially	resetting	the	strain
to	zero.	But	in	the	model	developed	by	Bak	and	Tang,	just	as	in	the
sandpile,	the	strain	builds	up	and	the	rocks	deform	until	they	are	on	the
brink	of	slipping,	in	a	self-organized	critical	state.	Then,	the	earthquake
zone	undergoes	repeated	slips	on	all	scales	–	slips	which	specifically	do



zone	undergoes	repeated	slips	on	all	scales	–	slips	which	specifically	do
not	‘release	all	the	energy’	in	one	go	but	which	release	just	enough	to
maintain	the	fault	in	the	critical	state.	Unlike	the	traditional	model,	this
explains	why	earthquakes	obey	a	power	law.

The	computer	models	of	‘sandpiles’	developed	by	Bak	and	his
colleagues	specified	things	like	the	roundness	of	the	grains	being	added
to	the	pile,	their	stickiness,	and	so	on.	They	looked	at	what	happens	if
grains	are	added	at	random	over	the	surface	of	the	pile,	and	at	what
happens	if	they	are	always	dropped	from	the	same	place.	But	you	don’t
need	a	computer	(or	a	sandpile)	to	play	the	sandpile	game	and	get
insight	into	one	of	the	most	fundamental	laws	affecting	non-equilibrium
systems,	including	living	systems.	In	his	book	How	Nature	Works,	Bak
describes	how	anybody	can	get	an	insight	into	the	sandpile	model	by

using	ordinary	child’s	building	blocks.17	Using	a	grid	of	squares	(a	chess
board	would	be	ideal)	you	can	place	blocks	on	the	squares	to	a
maximum	height	of,	say,	three	blocks,	at	random,	so	that	on	some
squares	there	are	no	blocks,	on	some	one,	on	others	two,	and	on	some
three	(draughts	pieces	work	just	as	well,	if	you	can	get	hold	of	enough	of
them,	or	coins).	We	choose	an	arbitrary	rule	which	says	that	once	a	stack
reaches	four	blocks	high	it	goes	critical,	and	all	of	the	four	blocks
(corresponding	to	grains	of	sand)	in	that	stack	are	taken	off,	with	one	of
them	added	to	each	of	the	four	squares	at	the	sides	of	the	critical	square,
or	allowed	to	‘fall	off’	the	side	of	the	board	as	appropriate.	If	this	makes
one	of	those	squares	go	critical,	repeat	the	process.	Now,	add	blocks	one
at	a	time,	at	random,	to	the	grid	(you	can	choose	the	square	to	add	a
block	to	by	rolling	dice,	or	using	a	random	number	generator	on	a

computer18).	At	each	step,	move	the	blocks	in	accordance	with	the	rules.



Watch	how	the	system	moves	towards	the	critical	state,	with
‘avalanches’	on	all	scales	and	‘sand’	being	pushed	off	the	edge	of	the	grid
as	new	material	is	added	from	above.	In	the	self-organized	critical	state,
both	in	the	computer	models	and	this	‘model	of	a	model’	the	avalanches
obey	a	power	law.

Or,	of	course,	you	could	try	something	similar	with	a	real	pile	of
sand.	The	only	snag	is	that	ordinary	sand	doesn’t	behave	in	quite	the
same	way	as	the	simple	model,	because	the	sand	is	not	very	sticky	and
each	grain	has	a	lot	of	inertia,	so	the	avalanches	are	hard	to	stop.	It	still
obeys	a	power	law,	but	the	fine	scale	of	smaller	avalanches	is	harder	to
pick	out.	It	turns	out	that	a	much	better	approximation	to	the	‘ideal’
sandpile	of	the	computer	modellers	is	provided	by	heaps	of	long-grain
rice,	because	the	long	grains	of	the	rice	provide	more	friction,	enabling
them	to	stick	in	interesting	configurations	for	longer	rather	than
slumping	at	once	in	an	all-or-nothing	avalanche.	The	experiments	using
rice	were	first	carried	out	by	Vidar	Frette	and	colleagues	at	the
University	of	Oslo	in	Norway.	To	make	things	even	simpler,	the	long-
grain	rice	used	in	the	experiments	was	fed	into	a	gap	between	two
vertical	panes	of	glass	(like	a	double-glazed	window),	making	the
experiment	essentially	two-dimensional,	just	one	rice	grain	thick
(another	example	of	the	physicist’s	urge	to	keep	things	simple),	and
allowing	the	behaviour	of	the	rice	to	be	recorded	on	video	as	grains
were	dropped	into	the	gap	one	at	a	time.	The	sizes	of	rice	avalanches
occurring	in	the	system	at	the	critical	state,	analysed	the	usual	way,
follow	the	now-anticipated	power	law.	Even	better,	analysis	of	a
snapshot	of	the	pattern	made	by	the	edge	of	the	rice	pile	whenever	it	is
stuck	between	avalanches	shows	that,	like	the	coastline	of	Norway,	it	is



fractal.	But	one	of	the	most	important	insights	provided	by	the
Norwegian	team	came	when	they	coloured	some	of	the	rice	grains	being
dropped	in	through	the	slot	at	the	top	of	the	‘window’,	so	that	they	could
follow	the	motion	of	individual	grains.	It	turns	out	that	the	grains	being
dropped	in	do	not	always,	as	you	might	have	guessed,	slide	down	the
surface	and	become	part	of	the	next	wave	of	avalanches.	Instead,	any
individual	grain	might	burrow	deep	inside	the	pile	before	emerging,
much	later,	in	an	avalanche.	Any	grain	can	stay	in	the	pile	for	any	length
of	time.	Conversely,	no	grains	stay	in	the	pile	all	the	time.	Even	the	most
deeply	buried	grains	eventually	work	their	way	to	the	surface	and	get
swept	up	in	avalanches.	Just	how	and	why	this	happens	is	still	not	fully
understood,	but	it	is	clearly	telling	us	that	even	in	this	extremely	simple
example	of	self-organized	criticality,	stripped	to	its	bare	bones,	the
whole	system	has	an	important	influence	on	every	component	part,	and
every	component	part	has	an	important	influence	on	the	whole	system.
There	are	no	components	that	sit	around	and,	essentially,	do	nothing.

The	idea	of	colouring	in	certain	‘grains’	also	proved	fruitful	in	the
computer	version	of	the	sandpile	game,	which	has	retained	its	name
even	though,	with	hindsight,	it	could	more	accurately	be	dubbed	the
rice-grain	game.	Where	the	insights	in	the	rice	game	came	from	looking
at	the	pile	of	rice	from	the	side,	this	new	insight	from	the	sandpile	game
came	from	looking	at	the	computer	simulation	of	the	sandpile	from
above	–	one	of	the	advantages	of	a	computer	simulation,	of	course,	is
that	you	can	‘look’	at	it	from	any	perspective,	and	even	take	a	cross-
section	through	it	if	you	choose.	With	this	point	of	view,	the	Brookhaven
team	then	instructed	the	computer	to	colour-code	the	grains	of	sand
visible	on	the	surface	of	the	pile,	with	green	for	grains	that	lie	on	flat	or



gently	sloping	regions	where	there	is	little	or	no	likelihood	of	an
avalanche,	and	red	for	regions	that	lie	on	steep	slopes,	close	to	the
critical	point	where	an	avalanche	is	triggered	(on	our	chess-board
version	of	the	game,	this	would	be	equivalent	to	colouring	all	the	stacks
containing	three	blocks	red,	and	all	the	others	green).	The	experiment
(all	inside	the	computer,	of	course)	starts	out	with	a	scattering	of	sand
grains,	all	coloured	green,	spread	across	the	table.	As	the	pile	grows,
eventually	a	few	red	spots	appear.	As	it	grows	further,	towards	the
critical	state,	the	red	spots	grow	and	merge	into	threads	that	run	like	a
network	across	the	surface	of	the	sandpile.	When	there	are	only	a	few
isolated	red	spots,	even	if	a	new	grain	falling	on	the	pile	lands	in	one	of
those	spots,	it	can	only	have	a	local	effect,	causing	a	small-scale,	local
rearrangement	of	the	sand	grains	in	the	pile.	But	when	the	network	is
dense	enough,	a	new	grain	falling	on	one	red	spot	can	cause	a
disturbance	which	affects	other	red	spots	nearby,	in	a	domino	effect
which	might	trigger	a	small	rearrangement	of	the	sand	or	a	series	of
avalanches	involving	most	of	the	surface	of	the	sandpile.	What	matters	is

the	density	of	the	network	of	critical	points	in	the	system.	19	But	there	is
something	else	of	equal	importance.	Like	earthquake	zones,	the	system
does	not	reset	to	zero,	no	matter	how	complicated	the	network.	In	the
self-organized	critical	state,	the	fall	of	a	single	extra	grain	of	sand	on	to
the	network	may	trigger	a	large-scale	rearrangement	of	the	sand;	but
after	this	rearrangement	has	occurred	there	will	still	be	a	complex
network	of	critical	states,	it	will	just	be	arranged	in	a	different	pattern.
Plus	ça	change,	plus	c’est	la	même	chose.



Figure	5.7	The	number	of	avalanches	of	different	sizes	occurring	in	the	sandpile	model	(see	p.	160)
also	obeys	a	power	law,	producing	a	straight	line	on	a	log-log	graph.

We	are	ready	for	the	next	step,	and	the	first	real	insight	into	the
emergence	of	life.	Having	stripped	the	study	of	complexity	down	to	its
bare	essentials,	and	found	the	same	deep	truth	underpinning	things	as
diverse	as	earthquakes,	the	stock	market	and	the	movement	of	human
populations,	we	discover	that	it	is	all	built	on	networks,	interconnections
between	the	simple	parts	that	make	up	a	complex	system.	The
importance	of	such	networks	in	general,	and	their	specific	importance
for	the	emergence	of	life,	has	been	investigated	by	Stuart	Kauffman,	of
the	Santa	Fe	Institute	in	New	Mexico.

Kauffman	has	a	striking	analogy	which	brings	out	both	what	we
mean	by	complexity	and	the	importance	of	networks	in	emerging
complex	systems.	He	asks	us	to	imagine	a	large	number	of	ordinary
buttons,	perhaps	10,000	of	them,	spread	out	across	a	floor.	Individual
buttons	can	be	connected	in	pairs	by	thread,	but	at	the	start	of	the
thought-experiment	there	are	no	such	connections.	This	is	definitely	not
a	complicated	system	in	the	everyday	use	of	the	term.	But	the	way	you
connect	the	buttons	turns	it	into	a	complex	system.	You	start	with	just



connect	the	buttons	turns	it	into	a	complex	system.	You	start	with	just
the	buttons	on	the	ground	and	a	supply	of	thread,	but	with	no	button
connected	to	any	other	button.	Choose	a	pair	of	buttons	at	random	and
tie	them	together	with	a	single	thread,	leaving	them	in	their	original
positions	on	the	floor.	Repeat	the	process	a	few	times,	and	if	you	happen
to	choose	a	button	that	is	already	connected	to	another	button,	don’t
worry	about	it;	just	use	the	thread	to	connect	it	to	another	button	as
well.	After	you	have	done	this	a	few	times,	there	will	be	a	small	amount
of	structure	in	the	collection	of	buttons.	Increasingly,	you	will	find	that
from	time	to	time	you	do	indeed	choose	a	button	that	is	already
connected	to	another	button;	sometimes,	you	will	even	choose	a	button
that	already	has	two	connections,	and	you	will	link	it	to	yet	a	third
component	of	what	has	become	a	growing	network	of	connections.

The	way	to	tell	how	interesting	this	network	has	become	is	to	pick	up
a	few	buttons,	one	at	a	time,	and	count	the	number	of	connections	they
each	have	with	other	buttons.	Each	connected	cluster	of	buttons	is	an
example	of	what	is	known	as	a	component	in	a	network;	the	buttons	are
examples	of	nodes,	points	that	connections	are	connected	to.	The
number	of	buttons	in	the	largest	cluster	(the	size	of	the	largest
component)	is	a	measure	of	how	complex	the	system	has	become.	The
size	of	the	largest	cluster	grows	slowly	at	first,	more	or	less	in	a	linear
fashion,	as	the	number	of	threads	connecting	pairs	of	buttons	is
increased;	because	most	buttons	don’t	have	many	connections,	already
there	is	only	a	small	chance	that	each	new	connection	will	add	another
button	or	two	to	the	existing	largest	cluster.	But	when	the	number	of
threads	approaches	and	then	exceeds	half	the	number	of	buttons,	the
size	of	the	largest	cluster	increases	extremely	rapidly	(essentially
exponentially)	as	each	new	thread	is	added,	because	with	most	of	the



buttons	now	in	clusters	there	is	a	good	chance	that	each	new	connection

will	link	one	smaller	cluster	(not	just	an	individual	button)	to	the
existing	largest	cluster.	Very	quickly,	a	single	supercluster	forms,	a
network	in	which	the	great	majority	of	the	buttons	are	linked	in	one
component.	Then	the	growth	rate	tails	off,	as	adding	more	threads
usually	just	increases	the	connections	between	buttons	that	are	already
connected	and	only	occasionally	ties	in	one	of	the	few	remaining
outsiders	to	the	supercluster.	Although	the	network	has	stopped
changing	very	much	as	new	connections	are	made,	it	is	by	now,	without
doubt,	a	complex	system.

You	can	see	this	sort	of	effect	at	work	yourself,	by	actually	playing
with	buttons	(fifty	or	so	might	be	a	more	sensible	number	to	choose	than
10,000),	but	the	pattern	of	behaviour	is	brought	out	very	clearly	using	a
simple	computer	model	of	such	a	system.	The	important	point	is	that	as
the	number	of	connections	in	the	network	exceeds	half	the	number	of
nodes,	it	switches	very	quickly	from	one	rather	boring	state	(a	lot	of
buttons	with	a	few	connections	between	them)	to	another	stable	state
with	a	lot	more	structure,	but	in	which	there	is	little	scope	for	further
change.	This	is	a	simple	example	of	the	phenomenon	known	as	a	phase
transition,	which	Kauffman	likens	to	the	way	in	which	water	undergoes
a	phase	transition	as	it	freezes	into	ice.	In	the	network,	complexity	has
emerged	naturally	from	a	very	simple	system	just	by	adding	more
connections,	with	the	interesting	activity	associated	with	the	changeover
occurring	all	at	once,	right	at	the	phase	transition,	where	the	system	is
switching	from	one	state	to	another	as	a	result	of	a	very	few	final
connections	being	made.

Of	course,	the	connections	do	not	have	to	be	physical	pieces	of
thread.	In	the	sandpile	model,	the	connections	are	determined	by	the



thread.	In	the	sandpile	model,	the	connections	are	determined	by	the
laws	of	physics	that	are	involved–the	law	of	gravity,	pulling	grains	of
sand	down	the	pile,	the	laws	of	friction,	encouraging	sand	grains	to	stay
put,	and	so	on.	What	matters	is	that,	as	the	pile	gets	steeper,	more
connections	are	made	between	individual	grains,	because	the	movement
of	one	grain	increasingly	affects	the	stability	of	its	neighbours.	In	a
shallow	pile	of	sand,	removing	(or	adding)	one	grain	doesn’t	affect	the
neighbours	very	much.	At	the	critical	angle,	removing	one	grain	may
represent	taking	away	the	piece	of	the	puzzle	that,	like	the	keystone	in,
the	arch	of	a	bridge,	was	preventing	many	other	pieces	from	moving
downwards,	and	when	they	slide	many	other	grains	are	affected,	and	so
on.	Making	the	angle	of	the	sandpile	steeper	has	the	same	effect,	in
terms	of	increasing	the	complexity	of	the	network,	as	adding	more
connections	between	buttons.	In	a	similar	way,	as	we	have	seen,	an
asteroid	orbiting	between	Mars	and	Jupiter	is	not	just	under	the
individual	influence	of	the	Sun,	but	is	part	of	a	complex	network	of
connections,	made	by	gravity,	involving	(in	principle)	every	other
gravitating	object	in	the	Universe,	but	even	at	a	simpler	level	involving
all	of	the	major	planets	in	the	Solar	System,	as	well	as	the	Sun.	That’s
what	makes	its	behaviour	unpredictable.



Figure	5.8a	Stuart	Kauff	man’s	‘button’	model	of	how	networks	form	(see	p.	163).

Figure	5.8b	As	the	number	of	connections	increases,	there	is	a	sharp	transition	from	the	state	in	which
there	are	many	‘loose’	buttons	and	a	few	connections	to	the	state	in	which	almost	every	button	is	part	of
the	network.

The	reason	Kauffman	was	interested	in	networks	was	because	he	is
interested	in	the	most	important	emergent	phenomenon	of	them	all	–
how	life	emerged	from	non-life.	What	was	it	that	happened	in	the
chemical	‘primordial	soup’,	either	on	Earth	or	somewhere	else,	to	make
some	of	those	chemicals	link	up	into	self-replicating	systems?	Kauffman
(1939–)	studied	at	Dartmouth	College	in	New	Hampshire,	and	then	from



1961	to	1963	at	the	University	of	Oxford	on	a	Marshall	Scholarship.
Although	he	saw	himself	as	a	philosopher	when	he	started	on	this
course,	in	Oxford	philosophy	was	taught	alongside	a	great	deal	of
biology,	in	order	to	equip	students	to	address	questions	such	as	the
relationship	between	the	images	of	the	world	that	we	carry	in	our	heads
and	the	physical	way	in	which	our	eyes	and	nervous	systems	interpret
information	from	the	outside	world.	Increasingly	disillusioned	by	the
navel-gazing	aspects	of	philosophy,	and	intrigued	by	the	biology,
Kauffman	switched	to	medicine,	studying	to	be	a	doctor	at	the
University	of	California,	San	Francisco.	It	was	there	that	he	developed
his	interest	in	how	genes	work	within	the	cell	and	how	life	itself
emerged,	officially	becoming	a	theoretical	biologist	when	he	moved	to
the	University	of	Chicago	in	1969,	after	completing	his	medical	studies.
But	his	interest	in	the	fundamentals	of	the	emergence	of	life	lay	fallow
until	the	1980s,	simply	because	he	was	too	busy	on	other	work	(first	in
Chicago,	then	at	the	National	Institutes	of	Health,	then	at	the	University
of	Pennsylvania)	to	pick	up	the	threads.	The	key	work	was	eventually
published	in	1986,	and	its	core	idea	can	be	summed	up	very	simply	in
terms	of	the	kind	of	networks	we	have	been	discussing;	although	he	was
still	on	the	staff	at	the	University	of	Pennsylvania,	where	he	was
teaching,	Kauffman’s	research	base	became	the	Santa	Fe	Institute,	and
his	ideas	were	developed	in	collaboration	with	colleagues	there,	very
much	in	an	interdisciplinary	environment	where	there	was	a	buzz	about
ideas	such	as	chaos,	complexity	and	self-organized	criticality.

All	you	have	to	do	is	to	imagine	that	in	the	primordial	chemical
broth	there	were	some	substances	that	acted	as	catalysts	for	the
formation	of	other	substances,	like	the	catalytic	processes	at	work	in	the



BZ	reaction.	Chemical	A	catalyses	the	formation	of	chemical	B.	It’s	hard

to	see,	given	the	variety	of	chemical	raw	materials	around,	20	how	this
could	not	be	the	case,	and	even	if	the	encouragement	A	gave	to	the
formation	of	B	was	only	small,	it	would	still	increase	the	concentration
of	B	in	the	mix.	Now	suppose	that	the	presence	of	B	encourages	the
formation	of	C,	C	acts	as	a	catalyst	for	the	formation	of	D,	and	so	on.
Somewhere	down	the	line,	one	of	the	compounds	involved	catalyses	the
formation	of	A,	and	you	have	a	self-sustaining	loop	of	interactions,
which	in	effect	feeds	off	the	raw	material	available	and	makes	more	of
the	compounds	in	the	loop,	with	the	aid	of	energy	from	sunlight	or	the
heat	from	volcanic	vents.	There	can	also	be	other	interactions,	as	we	saw
in	our	earlier	examples	of	self-sustaining	chemical	interactions	–	D	might
act	as	a	catalyst	for	A,	as	well	as	for	E,	and	there	could	be	inhibitors
involved	as	well,	again	like	the	BZ	reaction.	It	is	quite	easy	to	see	how	a
network	of	connections	between	the	chemicals	in	the	broth	can	arise,	an
autocatalytic	network	which	sustains	itself.	This,	argues	Kauffman,	is	the
way	life	arose	–	as	a	phase	transition	in	a	chemical	system	involving	a
sufficient	number	of	connections	between	the	nodes	(individual	chemical
compounds)	of	the	network.	A	crucial,	and	persuasive,	feature	of	this
argument	is	that	like	the	emergence	of	a	supercluster	in	the	button	and
thread	network,	this	is	an	all-or-nothing	event.	If	the	network	is
insufficiently	connected,	there	is	no	life;	but	add	one	or	two	more
connections	and	life	becomes	not	only	possible	but	inevitable.	You	do
not	have	to	build	a	long	chain	of	unlikely	chemical	events	one	after	the
other	in	order	for	life	to	emerge,	and	there	are	no	half-and-half	states
where	you	are	not	quite	sure	whether	the	system	is	dead	or	alive.

There	is	a	great	deal	more	to	the	argument,	involving	details	of	real



chemical	interactions,	and	the	need	to	consider	how	the	raw	materials
could	have	got	sufficiently	close	together	for	the	series	of	interactions	to
occur	–	one	possibility	is	that	they	were	concentrated	in	a	thin	layer	of
material,	either	a	smear	of	liquid	across	a	surface,	or	in	a	layer	bound	to
a	clay	surface.	We	should	emphasize	that	these	ideas	are	both
speculative	and	controversial;	not	everybody	is	persuaded	by	the
argument,	and	there	are	other	ideas	about	how	life	might	have	got
started.	But	not	everybody	is	convinced	by	those	other	ideas	either,	and
nobody	knows	for	sure	just	what	did	occur	when	life	emerged	from	non-
life.	Even	in	Kauffman’s	model,	many	details	remain	to	be	explored.	But
we	find	the	overall	package	of	ideas	persuasive,	not	least	since	it	fits	the
emergence	of	life	into	the	same	set	of	complex	systems	based	on	simple
laws	that	we	find	so	often	elsewhere.	As	Kauffman	puts	it,	‘life
crystallizes	at	a	critical	molecular	diversity	because	catalytic	closure

itself	crystallizes’.	21	Whatever	the	origins	of	life,	though,	ideas	involving
networks,	connections	and	self-organized	criticality	provide	powerful
new	insights	into	the	way	life	operates	once	it	has	emerged,	which	we
shall	begin	to	discuss	in	the	next	chapter.	But	before	we	do	so,	there	is
another	of	Kauffman’s	speculations	that	is	worth	describing.	Although	it
is	no	less	controversial	than	his	ideas	on	the	emergence	of	life,	it	offers	a
mind-blowing	example	of	the	extent	to	which	the	complexity	of	living
things	(the	most	complex	things	in	the	entire	Universe)	may	very	well	be
based	on	deep	simplicity.

Kauffman	was	–	and	is	–	interested	in	the	way	cells	work,	at	the	level
of	genes	providing	the	instructions	which	operate	what	is	sometimes
loosely	called	the	machinery	of	the	cell.	The	instructions	are	ultimately
coded	in	DNA,	the	long	molecules	which	make	up	the	genes	themselves;



but	both	the	machinery	and	the	structure	of	the	body	are	actually	made
of	proteins.	Things	like	hair	and	fingernails,	as	well	as	muscle,	are	forms
of	protein,	and	so	are	things	like	haemoglobin,	which	carries	oxygen
around	in	your	blood,	and	enzymes,	which	are	essentially	biological
catalysts	that	promote	chemical	reactions	important	for	life.	Proteins
themselves	are	large	molecules	made	up	of	sub-units	called	amino	acids,
which	is	why	the	discovery	that	amino	acids	exist	in	the	kind	of
interstellar	clouds	from	which	the	Sun	and	its	family	of	planets	formed	is
so	intriguing.	The	genetic	code	in	DNA	contains	instructions	for	making
proteins,	and	those	proteins	then	carry	out	the	work	of	life.	But	there	is
another	step	in	the	process.	When	a	gene	is	activated	(just	how	and	why
this	happens	is	beyond	the	scope	of	the	present	discussion),	the	relevant
piece	of	information	is	first	copied	into	a	piece	of	very	similar	molecule
called	RNA.	Then,	the	machinery	of	the	cell	reads	the	RNA	and	acts	on
the	instructions	to	make	the	appropriate	protein.	This	two-step	process	is
probably	telling	us	something	about	how	life	originated,	and	it	is	at	least
possible	that	RNA	was	‘invented’	before	DNA.	In	Kauffman’s	scenario,
the	‘crystallization’	of	life	occurred	at	the	protein	level,	in	a	chemical
soup	rich	in	amino	acids,	where	the	first	autocatalytic	networks	of	life
emerged;	the	model	easily	accommodates	the	possibility	that	RNA	was
involved	at	an	early	stage,	and	that	later	the	evolutionary	pressures
associated	with	competition	between	different	autocatalytic	networks
could	have	led	to	the	system	we	see	today.	But	we	digress.

The	relevant	points	which	underpin	Kauffman’s	investigation	of	the
way	cells	work	are	that	genes	act	to	control	the	machinery	of	the	cell,
and	(crucially)	that	genes	can	affect	each	other,	with	one	gene	turning

another	one	on	or	off.	22	His	investigation	of	the	machinery	of	cells	in



terms	of	networks	goes	back	to	his	unofficial	interest	in	networks	as	a
medical	student,	but	came	to	fruition	in	his	work	at	the	Santa	Fe
Institute	in	the	late	1980s.	At	the	time	Kauffman	carried	out	this	work,	it
was	thought	that	there	were	about	100,000	different	genes	in	human
DNA	–	the	human	genome.	Since	then	the	human	genome	project	has
shown	that	this	was	an	overestimate,	and	suggests	there	are	only	about	a
third	as	many	genes	that	specify	what	it	is	to	be	a	human	being.	All	of
those	genes	are	present	in	the	DNA	of	every	cell	in	the	human	body,	but
they	are	not	all	active	in	every	cell	in	the	body.	Different	kinds	of	cell
are	specialized	for	different	tasks,	so	that	liver	cells,	for	example,	do
quite	different	things	from	the	cells	in	muscles.	This	differentiation	of
cells	into	specialized	forms	occurs	during	the	development	of	the
embryo,	and	understanding	the	process	of	development	and	cell
specialization	is	one	of	the	most	important	areas	of	biological	research.
But	however	the	process	happens,	in	the	fully	developed	human	being
there	are	some	256	different	kinds	of	specialized	cell.	In	each	case,	only
the	appropriate	bits	of	DNA	(the	appropriate	genes)	ever	get	‘switched
on’	during	the	normal	course	of	life,	so	that	a	liver	cell	is	only	ever	a
liver	cell.	But	all	the	rest	of	the	genetic	information	is	still	there,	as	has
been	dramatically	demonstrated	in	cloning,	where	the	DNA	from	a
specialized	cell	is	transferred	into	an	egg	cell,	which	then	develops	into	a
new	adult	that	is	a	replica	of	the	one	the	DNA	came	from.

The	network	involved	in	running	a	cell	can	be	described	in	terms	of	a
system	with	one	node	for	each	gene,	and	connections	linking	the	genes
like	threads	linking	the	buttons	in	the	earlier	model.	With	between
30,000	and	100,000	genes	involved,	you	might	guess	that	the	problem
of	describing	the	behaviour	of	such	a	network	would	be	too	complicated



to	solve,	even	using	the	best	modern	computers.	Kauffman	uses	an
analogy	in	which	the	nodes	in	the	network	are	lightbulbs,	wired	together
at	random.	In	such	a	system,	all	of	the	bulbs	might	be	on,	or	they	might
all	be	off.	And	in	between	those	two	extremes	there	are	a	vast	number	of
different	states	in	which	different	combinations	of	bulbs	are	on	or	off.	To
be	precise,	if	there	are	N	such	bulbs,	then	since	each	one	can	exist	in
either	of	two	states	(on	or	off),	the	number	of	states	for	the	whole	system

is	2N.	With	one	bulb,	there	are	two	states;	with	two,	there	are	four;	with
three,	there	are	eight;	and	so	on.	With	just	100	lightbulbs	wired	together

at	random,	there	are	2100	different	possible	states,	and	2100	is	roughly

1030.	It	is	impossible	to	put	such	a	large	number	in	any	sort	of	human
perspective,	but	in	so	far	as	the	comparison	may	help,	there	have	only

been	about	4	×	1017	seconds	since	the	Big	Bang	in	which	the	Universe

was	born,	and	remember	that	1030	is	not	13	times	bigger	than	1017,	but

1013	times	bigger	(that	is,	ten	thousand	billion	times	bigger).

Undaunted,	though,	Kauffman	and	his	colleagues	investigated	the
behaviour	of	such	large	networks	in	computer	models,	with	what	seems
like	the	added	complication	of	feedback,	in	which	whether	or	not	one
particular	lightbulb	is	turned	on	depends	on	the	state	of	the	lightbulbs	it
is	wired	up	to.	They	apply	the	rules	of	Boolean	logic	(or	Boolean

algebra),	23so	that,	for	example,	if	a	particular	bulb	is	wired	up	to	two
other	bulbs,	then	it	might	only	be	on	if	both	the	other	bulbs	are	on	(an
AND	operation),	or	it	might	only	be	on	if	one	or	other	of	the	other	bulbs
is	alight	(an	OR	operation),	and	so	on.	In	these	investigations	they
looked	at	the	overall	patterns	of	behaviour	for	networks	consisting	of
different	numbers	of	bulbs,	with	different	numbers	of	connections



attached	to	each	node,	and	with	different	Boolean	operator	functions
assigned	at	random	to	each	node.	Hardly	surprisingly,	the	investigation
took	years.

What	the	team	was	looking	for	were	stable	patterns	resulting	from
simple	rules.	Any	of	these	systems	has	a	finite	number	of	states,	even	if
the	number	is	ludicrously	large.	If	you	start	the	system	in	some
randomly	chosen	state,	with	some	lightbulbs	on	and	some	off,	the	lights
will	flicker	and	change	in	accordance	with	the	particular	set	of	Boolean
rules	that	has	been	applied,	and	if	you	are	lucky	it	will	settle	into	a
repeating	pattern,	following	its	own	tail	endlessly	around	the	same	cycle
of	states	(called,	logically	enough	from	the	context,	a	state	cycle,	but
essentially	the	same	as	the	limit	cycles	we	discussed	earlier).	The	state
cycle	might	be	short	enough	for	you	to	notice	the	pattern,	or	it	might
involve	so	many	changes	that	you	could	wait	for	the	lifetime	of	the
Universe	and	never	notice	any	repetition.	Or	the	system	might	freeze
into	a	state	with	some	bulbs	on	and	some	off,	and	stay	unblinking	for
ever.	The	state	cycles	act	as	attractors	for	the	system,	and	in	some	cases
they	turn	out	to	be	very	powerful	attractors,	so	that	whatever	state	you
start	the	system	in	it	very	quickly	moves	towards	one	of	these	state
cycles.	That	may	be	the	key	to	cellular	life.

Kauffman	and	his	colleagues	found	that	if	there	is	just	one	input	per
bulb,	however	many	nodes	you	have	and	whatever	rules	of	Boolean	logic
you	apply,	nothing	interesting	happens.	The	system	either	gets	into	a
very	short	state	cycle,	or	freezes	up.	If	the	number	of	connections	to
each	node	is	greater	than	2,	chaos	reigns.	There	are	attractors,	but	the
attractors	have	huge	numbers	of	states,	and	they	are	also	very	sensitive,
in	the	sense	that	a	small	change	(perhaps	switching	just	one	of	the



lightbulbs	on	or	off)	will	shift	the	system	in	favour	of	another	attractor	–
very	much	like	the	classic	Butterfly	Effect.	The	only	systems	that	behave
in	a	way	that	is	both	complicated	enough	to	be	interesting	and	stable
enough	to	be	understood	are	those	in	which	each	node	is	connected	to
exactly	two	other	nodes.	Interesting	things	happen	at	the	edge	of	chaos,
and	feedback	is	an	essential	ingredient	in	what	makes	them	interesting.
In	those	systems	alone,	each	state	cycle	has	a	length	equal	to	the	square

root	of	the	number	of	nodes.	Out	of	all	of	the	2100	possibilities	in	the
system	we	just	described,	under	these	conditions	it	will	settle	down	into
a	state	cycle	which	has	just	10	steps	in	it	(10	being	the	square	root	of
100),	and	the	pattern	will	be	obvious	to	anyone	watching	the	system.
Even	in	a	system	with	100,000	nodes,	a	typical	state	cycle	will	be	just
317	steps	long.	Even	better,	these	state	cycles	are	powerful	attractors,
and	if	the	system	is	set	up	in	any	random	state,	it	quickly	moves	towards
one	of	these	cycles	and	settles	down,	without	being	sensitive	to	small

disturbances.	You	can	set	up	a	system	which	has	2100,000	different	states

(about	1030,000	states),	start	it	in	any	randomly	chosen	pattern,	and
almost	literally	in	the	blink	of	an	eye	it	will	settle	down	into	a	stable
cycle,	repeatedly	visiting	just	317	of	those	states	in	the	same	regular

order.	24

There’s	more.	The	same	kind	of	statistics	apply	to	the	number	of
different	state	cycles	that	can	exist	in	such	a	system,	although	only	in	a
more	approximate	way.	In	the	kind	of	systems	we	have	just	described
there	should	be	a	number	of	different	attractors	approximately	equal	to
the	square	root	of	the	number	of	nodes.	With	100,000	different	nodes,
there	will	be	about	317	different	attractors.	With	30,000	nodes,	there
will	be	about	173	different	attractors.	There	are	between	30,000	and



100,000	genes	in	the	human	genome,	and	there	are	256	different	kinds
of	cell	in	the	human	body.	Could	it	be	that	each	cell	type	represents	a
particular	state	cycle	for	the	human	genome,	in	which	specific	genes	are
turned	on	and	others	off?	To	test	this	possibility,	Kauffman	has
compared	the	number	of	genes	and	the	number	of	cell	types	in	different
organisms.	Bacteria	have	only	one	or	two	different	kinds	of	cell,	yeasts
maybe	three,	the	fruit	fly	60,	and	so	on.	The	number	of	cell	types
increases	in	proportion	to	the	square	root	of	the	amount	of	DNA	present
in	the	organism,	and	even	though	genetic	blue	prints	have	not	yet	been
obtained	for	every	species,	it	seems	a	reasonable	rule	of	thumb	that	the
number	of	genes	is	proportional	to	the	amount	of	DNA.	The	number	of
cell	types	does	increase	as	the	square	root	of	the	number	of	genes!	The
implication	is	that	the	same	rules	that	govern	sandpiles	and	networks	of
lightbulbs	are	at	work	in	the	cells	of	our	bodies.	In	round	numbers,	there
are	a	couple	of	hundred	types	of	human	cell	because	there	are	a	couple
of	hundred	state	cycles	which	are	attractors	in	a	network	of	tens	of
thousands	of	genes	interacting	with	one	another	in	accordance	with	the
rules	of	Boolean	logic.	In	each	type	of	cell,	most	of	the	genes	are	frozen
in	the	‘off’	state,	but	a	minority	of	genes	twinkle	away,	turning	each
other	on	and	off	in	a	pattern	which	runs	through	a	cycle	a	couple	of
hundred	steps	long,	during	which	it	operates	the	chemical	machinery	of
the	cell	in	accordance	with	the	kind	of	cell	it	is,	before	repeating.	And
that’s	it	–	the	secret	of	life	at	the	level	of	cells.



Figure	5.9	A	log–log	graph	comparing	the	amount	of	DNA	in	a	cell	with	the	number	of	different	cell
types	for	various	organisms.	This	closely	follows	a	straight	line	with	slope	0.5	(a	square-root	law,	or	a
power	of1/2),	as	predicted	by	Stuart	Kauffman	on	the	assumption	that	the	number	of	structural	and
regulatory	genes	is	proportional	to	the	amount	of	DNA	in	the	cell	(see	pp.	172–3).

This	is	still	work	in	progress,	and	much	more	needs	to	be	done	to
turn	these	provocative	and	persuasive	ideas	into	a	complete	theory	of
cell	differentiation	and	development.	But	the	story	so	far	hangs	together
well,	suggesting	strongly	that	even	creatures	like	us,	the	most
complicated	systems	in	the	Universe,	are	built	upon	very	simple	rules.
All	the	apparent	complexity	of	an	interacting	system	of	tens	of	thousands
of	genes	boiling	down	to	a	few	hundred	possible	states,	thanks	to	the
deep	simplicity	of	the	world.	As	Kauffman	says,	‘we	are	the	natural
expression	of	a	deeper	order’.	It	is	time	to	move	on	to	see	how	that
deeper	order	affects	the	interactions	not	just	between	genes	and	other
chemicals,	but	between	different	kinds	of	living	organisms	in	the	world
at	large.



6
The	Facts	of	Life

Evolution	is	a	fact,	just	as	the	elliptical	shape	of	the	orbit	of	a	planet
around	the	Sun	is	a	fact.	There	is	ample	evidence	of	evolution	at	work,
transforming	one	species	into	another,	both	in	the	fossil	record	and	from

studies	of	present-day	life	on	Earth.1	The	theory	of	natural	selection,
arrived	at	independently	by	Charles	Darwin	and	Alfred	Russel	Wallace	in
the	second	half	of	the	nineteenth	century,	is	a	model	which	offers	an
explanation	of	why	evolution	happens,	just	as	the	theory	of	gravity,
arrived	at	by	Isaac	Newton	in	the	second	half	of	the	seventeenth	century,
is	a	model	which	offers	an	explanation	of	why	planets	follow	elliptical
orbits.	Neither	theory,	or	model,	is	the	last	word	on	its	subject.	Newton’s
theory	was	improved	on	at	the	beginning	of	the	twentieth	century	by
Albert	Einstein,	who	found	a	more	complete	model	of	how	gravity	works
–	the	general	theory	of	relativity.	Einstein’s	theory	is	more	complete	than
Newton’s	theory	because	it	applies,	with	great	precision,	in	situations
where	Newton’s	theory	is	an	inadequate	description	of	the	Universe	we
live	in–most	notably	under	conditions	where	there	is	an	intense
gravitational	field.	But	the	fact	that	Einstein’s	theory	is	right	does	not
mean	that	Newton’s	theory	is	wrong.	Newtonian	gravitational	theory	is
still	entirely	adequate	for	describing	(or	calculating)	the	fall	of	an	apple
from	a	tree	on	Earth,	say,	or	the	trajectory	of	a	spacecraft	travelling



between	the	Earth	and	the	Moon.	It’s	just	that	under	some	circumstances
you	need	something	more	than	Newtonian	gravitational	theory	in	order
to	get	the	full	picture.

By	the	end	of	the	twentieth	century,	it	was	also	clear	that	under	some
circumstances	you	need	something	more	than	the	Darwin–Wallace
theory	of	natural	selection	in	order	to	get	the	full	picture	of	how
evolution	works	–	most	notably	when	there	are	many	different	species
interacting	in	an	ecosystem.	But	this	does	not	mean	that	the	Darwin–
Wallace	model	is	wrong,	and	that	model	is	still	entirely	adequate	for
describing	some	evolutionary	situations,	especially	those	which	involve
only	a	few	species	interacting	with	each	other	and	their	physical
environment.	We	shall	refer	to	this	as	‘Darwinian	evolution’,	following	a
tradition	that	goes	back	to	Wallace	himself,	who	was	the	first	to
acknowledge	Darwin	as	the	primary	discoverer	of	the	theory,	not	least
because	Darwin	had	taken	the	crucial	step	of	presenting	it	to	a	wide
audience	(in	his	book	On	the	Origin	of	Species	by	Means	of	Natural
Selection,	first	published	in	1859).	In	order	to	appreciate	the	significance
of	the	recent	work,	which	has	provided	a	more	complete	picture	of	how
evolution	works	by	including	the	complex	web	of	interactions	involved
in	an	ecological	network	made	up	of	many	interacting	species,	we	first
need	to	get	a	clear	idea	of	what	Darwinian	evolution	is	all	about.

The	essence	of	Darwinian	evolution	can	be	summed	up	in	three	steps,
forming	a	chain	of	logic	so	straightforward	that	it	is	almost	a	tautology,
which	led	Thomas	Henry	Huxley,	a	contemporary	of	Darwin	and	a
champion	of	the	idea	of	natural	selection,	to	comment	when	he	first
encountered	the	idea,	‘How	extremely	stupid	not	to	have	thought	of	that

myself.’2	First,	offspring	resemble	their	parents.	Characteristics	are



inherited,	passed	on	from	one	generation	to	the	next.	Secondly,	the
process	(whatever	it	is)	that	copies	characteristics	from	one	generation
to	the	next	is	not	perfect,	so	there	are	slight	(sometimes,	more	than
slight)	variations	between	individuals	in	each	generation	–	even	between
siblings.	All	people	have	noses,	for	example,	but	some	people	have	larger
noses	than	other	people	do.	A	large	nose	may	be	a	family	characteristic,
but	two	brothers	within	that	family	will	not	have	exactly	the	same	size
nose,	even	if	each	of	them	has	a	nose	that	is	larger	than	yours.	Finally–
and	this	is	the	crucial	point	that	both	Darwin	and	Wallace	seized	upon–
there	are	more	individuals	born	in	each	generation	than	survive	to

become	adults	and	reproduce	in	their	turn.3	But	why	do	some	individuals
survive	to	reproduce	while	others	do	not?	The	great	insight,	which	led
Huxley	to	his	famous	comment,	is	that	the	individuals	that	survive	are
the	ones	which	fit	in	best	to	their	surroundings.	They	are	the	ones	who
are	good	at	finding	food,	finding	(or	attracting)	a	mate,	and	avoiding
being	eaten	by	something	else.	This	is	what	is	meant	by	‘survival	of	the
fittest’.	Not	necessarily	the	most	physically	fit	and	athletic	individuals
(although	that	might	be	part	of	the	story	in	some	cases),	but	the	ones
who	fit	in	best	to	their	environment	(including	the	‘environment’
provided	by	the	presence	of	other	species),	like	the	fit	of	a	piece	in	a
jigsaw	puzzle,	or	the	fit	of	a	key	in	a	lock.	Not	the	ones	who	are	fit,	the
ones	who	do	fit.

Now,	go	back	to	the	beginning	of	the	chain	of	logic.	The	individuals
who	fit	in	best	survive	and	reproduce.	So	they	pass	on	their
characteristics	to	the	next	generation,	including	those	characteristics	that
made	them	successful	in	the	first	place.	As	long	as	the	environment	stays
the	same	(a	very	big	‘if’,	as	we	shall	see)	this	process	will	fine-tune	the
members	of	a	species	to	fit	ever	more	exquisitely	into	their	ecological



members	of	a	species	to	fit	ever	more	exquisitely	into	their	ecological
niches.	Indeed,	part	of	the	observational	evidence	that	led	Darwin	to	the
idea	of	natural	selection	(though	it	took	rather	a	long	time	for	the	penny
to	drop)	came	from	his	studies	of	finches	from	different	islands	in	the
Galapagos	archipelago.	Although	the	birds	on	different	islands	are	all
members	of	the	same	family,	on	one	island,	where	the	seeds	that	the
birds	feed	on	are	tough	and	hard	to	crack	open,	the	finches	have	short,
powerful	beaks.	On	another	island,	where	the	food	that	is	available	has
to	be	probed	out	of	nooks	and	crannies,	their	cousins	have	longer,	more
slender	beaks.	Each	is	well	adapted	to	life	on	its	own	island,	but	if	birds
from	one	island	were	taken	to	the	other	island	and	released	they	really
would	struggle	to	survive.

The	struggle,	we	should	emphasize,	is	not	between	the	finches	and
other	species	–	not	even	with	the	plants	on	whose	seeds	they	feed.	There
is	a	competition	for	food	between	members	of	the	same	species.	In	this
example,	if	you	are	a	bird	that	lives	on	an	island	where	there	are	only
tough	seeds	to	eat,	having	a	stronger	beak	gives	you	an	advantage	over
other	birds.	It	means	you	can	get	more	food,	and	that	will	help	you	to
raise	a	larger	brood	of	chicks,	who	will	inherit	your	stout	beak.	Birds
with	slightly	less	stout	beaks	will	get	correspondingly	less	food,	have	less
success	in	raising	offspring,	and	in	the	next	generation,	on	average,

beaks	will	be	stouter	than	in	the	previous	generation.4	Similarly,	a	rabbit
who	runs	away	from	a	fox	is	not	competing	with	the	fox,	in	evolutionary
terms.	It	is	competing	with	other	rabbits.	The	ones	who	run	fastest,	and
zigzag	most	unpredictably,	will	survive	and	breed;	the	ones	who	don’t
will	get	eaten.	So,	in	succeeding	generations,	rabbits	get	better	and
better	at	running	quickly	but	erratically.	The	fox,	of	course,	is	in



competition	with	other	foxes	–	the	fox	that	runs	fastest,	or	uses	most
cunning	to	catch	its	prey,	will	survive	and	raise	more	offspring	(who
inherit	those	characteristics)	than	a	slow,	stupid	fox.	Getting	back	to	our
example	of	variations	in	nose	size,	you	can	imagine	that	a	change	in	the
environment	might	place	people	with	some	kind	of	nose	at	a
disadvantage–some	kind	of	pollution	might	make	it	advantageous	to
have	a	big	nose.	Babies	with	small	noses	might	then	be	more	likely	to
die	in	infancy,	and	remember	that	because	of	imperfections	in	the
process	of	copying	characteristics	from	one	generation	to	the	next,	even
siblings	can	have	different	sizes	of	nose.	Families	with	big	noses	will	fit
into	the	new	environment	better	than	families	with	small	noses,	but	even
within	those	families,	siblings	with	bigger	noses	will	do	better	than	their

brothers	and	sisters.5	Over	many	generations	the	average	size	of	the	nose
in	the	population	will	increase.

But	we	don’t	need	to	deal	in	hypothetical	examples	alone,	because
just	this	kind	of	effect	has	been	observed,	and	measured,	among	the	very
finch	populations	that	helped	to	open	Darwin’s	eyes	to	what	was	going
on.	In	the	early	1970s,	a	husband	and	wife	team	from	Princeton
University,	Peter	and	Rosemary	Grant,	began	a	long	programme
studying	the	birds	of	Daphne	Island,	in	the	Galapagos.	The	island	is
home	to	a	species	of	ground	finch,	Geospiza	fortis,	which	uses	a	strong
beak	to	crack	seeds.	In	1977,	there	was	a	severe	drought	on	the	island,
in	which	more	than	a	thousand	of	the	1,200	or	so	finches	being
monitored	in	the	study	died.	They	died	because	many	of	the	plants	they
depended	on	for	food	died,	so	there	was	fierce	competition	among	the
birds	for	food.	The	finches	that	survived	were	all	large	birds	with	big
beaks	that	were	able	to	eat	seeds	that	the	smaller	birds	could	not	crack



open.	As	the	population	recovered	after	the	drought,	with	all	the	new
birds	descended	from	these	survivors,	the	Grants’	team	measured	the
beaks	of	the	new	population	of	finches	and	found	that	they	were,	on
average,	4	per	cent	larger	than	the	average	before	the	drought.

This	is	the	essence	of	Darwinian	evolution,	and	it	is	very	good	at
explaining	relatively	stable	(at	most,	slowly	evolving)	situations
involving	only	a	few	species,	as	in	the	classic	example	of	life	on	the
Galápagos	Islands.	We	can	take	this	line	of	argument	to	its	logical	limit
by	considering	how	this	kind	of	natural	selection	can	produce	a
complete	standoff,	or	balance,	between	two	possible	ways	of	life,
resulting	from	what	is	called	an	evolutionarily	stable	strategy,	or	ESS.

The	insight	comes	from	the	application	of	the	mathematical	rules	of
games	theory	to	evolutionary	biology.	In	spite	of	its	cosy	name,	and
although	it	can	be	applied	to	games	such	as	chess	or	draughts,	‘games
theory’	has	received	a	great	deal	of	attention,	particularly	during	the
Cold	War,	because	of	its	relevance	to	war	‘games’,	hypothetical	scenarios
in	which	the	implications	of	different	military	and	political	strategies	are
assessed.	It	turns	out	that	these	techniques	are	relevant	to	evolutionary
races	as	well	as	to	arms	races;	one	of	the	leading	proponents	of	this
approach	to	the	study	of	evolution	is	John	Maynard	Smith	of	the
University	of	Sussex,	from	whom	the	following	example	comes.

He	asks	us	to	imagine	a	population	of	a	single	species	of	an	animal	in
which	each	member	of	the	population	acts	in	one	of	two	characteristic
ways.	Some	are	‘hawks’,	which	means	that	they	behave	aggressively	in
disputes	with	other	members	of	their	species	over	food,	and	some	are
‘doves’,	which	means	that	they	behave	more	submissively	in	such



arguments.	Real	doves,	as	Maynard	Smith	acknowledges,	are	really
rather	aggressive	birds,	but	since	they	are	often	used	as	symbols	of	peace
the	choice	of	name	makes	sense	in	this	context.	When	a	hawk	finds	a
piece	of	food,	and	another	member	of	the	species	is	present,	it	will
always	fight	for	the	food.	If	the	opponent	fights	back,	one	of	them	will
eventually	give	in,	short	of	it	being	a	fight	to	the	death,	leaving	the	food
for	the	victor.	When	a	dove	finds	a	piece	of	food	and	another	member	of
the	species	is	present,	it	will	never	start	a	fight.	If	it	is	attacked,	it	will
run	away	at	once;	if	it	is	not	attacked,	it	will	make	a	threatening	display,
but	when	two	birds	are	making	such	displays	at	each	other,	one	will
eventually	give	up	and	withdraw	more	or	less	gracefully	from	the
confrontation.	The	whole	point	of	games	theory,	though,	is	to	put
numbers	into	such	scenarios,	so	that	different	strategies	can	be	compared
in	a	qualitative	way,	and	for	the	sake	of	an	example	we	can	say	that	the
value	of	the	food	to	the	animal	is	50	units.	If	it	eats	the	food,	it	scores	50
points.	If	it	runs	away,	it	gets	nothing,	but	it	costs	nothing	to	run	away.
If	it	fights	for	the	food,	it	may	be	injured,	and	lose	100	points,	or	it	may
win	and	gain	the	50-point	prize;	if	it	makes	a	threat	display	before
running	away,	or	before	eating	the	food,	that	costs	it	10	points.

We	can	study	the	implications	by	starting	out	with	a	population
consisting	entirely	of	doves.	In	any	confrontation,	each	individual	loses
10	points	for	making	its	display,	but	one	of	them	gains	50	points	(40
points	overall)	by	eating	the	food.	On	average,	everybody	gets	15	points
in	each	confrontation	(40,	minus	10,	divided	by	2).	Nobody	gets	hurt,
everybody	gets	to	eat.	As	near	to	Utopia	as	this	model	permits.

But	now	imagine	that	because	of	a	mutation	a	single	hawk	arises	in
the	population.	In	every	confrontation,	the	hawk	gets	the	food–50	points
every	time,	at	no	cost	at	all.	As	long	as	there	are	only	a	few	hawks,	most



every	time,	at	no	cost	at	all.	As	long	as	there	are	only	a	few	hawks,	most
other	encounters	are	between	dove	and	dove,	with	an	average	reward	of
a	measly	15	points.	Clearly,	the	hawk	will	thrive	and	produce	lots	of
offspring	who	share	its	hawkish	tendencies.

What	happens,	though,	if	everybody	is	a	hawk?	Absolute	disaster.
Every	confrontation	leads	to	a	fight,	the	winner	gains	50	points	while
the	loser	loses	100	points,	and	the	average	is	a	lousy–25.	Such	a
population	would	soon	go	extinct	unless	there	was	plenty	of	food	around
that	could	be	picked	up	without	a	fight.	But	imagine	that	in	such	a
situation	a	single	mutant	dove	arises.	It	never	gets	in	a	fight,	so	in	any
‘conflict’	it	scores	zero,	but	it	too	gets	the	free	food	that	is	available.	The
dove	will	do	better	than	the	hawks,	and	dove	characteristics	will	spread
among	the	population.

Neither	extreme	is	stable,	and	from	either	end	there	is	an	evolution
towards	the	middle.	The	point	of	balance	is	actually	reached,	for	this
particular	choice	of	numbers,	when	there	are	five	doves	for	every	seven
hawks.	In	that	situation,	it	turns	out	that	each	individual	gets	6.25	points
per	conflict,	on	average.	The	first	important	point	to	notice	is	that	there
is	a	stable	situation	–	an	ESS–and	that	evolution	takes	the	population
there.	Equally	significantly,	though,	this	is	not	the	best	of	all	possible
worlds.	An	average	score	of	6.25	is	markedly	less	than	the	average	score
of	15	in	the	all	dove	society.	The	stable	scenario	is	not	necessarily	the
best	scenario,	the	one	that	would	be	chosen	by	a	logical	collection	of
individuals	acting	in	their	own	mutual	best	interests.	And	there	is	a	more
subtle	but	intriguing	point	to	note–the	situation	is	the	same	if	there	are
five	doves	for	every	seven	hawks	in	the	population,	or	if	each	individual
member	of	the	population	acts	like	a	dove	five-twelfths	of	the	time	and



like	a	hawk	seven-twelfths	of	the	time,	choosing	which	strategy	to
employ	in	each	encounter	at	random,	without	planning	it	in	advance.

The	ESS	approach	has	proved	useful	in	evolutionary	biology	in
providing	insights	into	the	real	patterns	of	behaviour	seen	in	some
populations.	But,	as	its	very	name	suggests,	it	deals	with	stable
situations,	in	which	there	is	essentially	no	change,	the	evolutionary
equivalent	of	classical	thermodynamics.	These	situations	involve	a	small
number	of	interacting	components	(in	this	case,	the	hawk	strategy	is	one
component,	the	dove	strategy	is	the	other	component,	and	they	are
connected	by	a	feedback	involving	one	link).	There	are	slightly	more
complex	examples	of	ESS	at	work,	but	they	are	all	like	the	simple
networks	of	a	few	lightbulbs,	linked	in	accordance	with	the	rules	of
Boolean	logic,	which	freeze	into	a	single	state,	or	cycle	around	a	very
limited	and	boring	number	of	states.	But	there	is	a	much	more
interesting	possibility,	in	which	an	ecosystem	that	seems	to	be	in	a	stable
state	is	actually	constantly	changing,	being	kept	in	balance	only	because
both	(or	all)	of	the	components	are	evolving	as	fast	as	they	can	in	order
to	keep	up	with	the	others.	This	has	very	clear	analogies	with	the
nuclear	arms	race	of	the	Cold	War,	which	we	do	not	intend	to	dwell	on
here;	in	evolutionary	biology,	it	is	usually	known	as	the	‘Red	Queen
effect’,	from	the	character	in	Lewis	Carroll’s	Through	the	Looking-Glass,

who	has	to	run	as	fast	as	she	can	in	order	to	stay	in	the	same	place.6

The	best	way	to	see	what	the	Red	Queen	hypothesis	is	all	about	is	to
consider	an	example	–	Kauffman	is	particularly	fond	of	describing	this	in
terms	of	an	imaginary	species	of	frog	that	feeds	on	an	imaginary	species
of	fly,	and	we	will	follow	his	example.	There	are	lots	of	ways	in	which
the	frogs,	who	want	to	eat	flies,	and	the	flies,	who	want	to	avoid	being



eaten,	interact.	Frogs	might	evolve	longer	tongues,	for	fly-catching
purposes;	flies	might	evolve	faster	flight,	to	escape.	Flies	might	evolve	an
unpleasant	taste,	or	even	excrete	poisons	that	damage	the	frogs,	and	so
on.	We’ll	pick	one	(hypothetical)	possibility.	If	a	frog	has	a	particularly
sticky	tongue,	it	will	find	it	easier	to	catch	flies.	But	if	flies	have
particularly	slippery	bodies,	they	will	find	it	easier	to	escape,	even	if	the
tongue	touches	them.	Imagine	a	stable	situation	in	which	a	certain
number	of	frogs	live	on	a	pond	and	eat	a	certain	proportion	of	the	flies
around	them	each	year.	This	is	a	kind	of	equilibrium,	but	it	is	unstable,
not	an	ESS,	as	you	can	see	by	imagining	that	because	of	a	mutation	(or
even	just	through	the	natural	variations	between	individuals)	a	frog
develops	an	extra	sticky	tongue.	It	will	do	well,	compared	with	other
frogs,	and	genes	for	extra	sticky	tongues	will	spread	through	the	frog
population.	At	first,	a	larger	proportion	of	flies	gets	eaten.	But	the	ones
who	don’t	get	eaten	will	be	the	more	slippery	ones,	so	genes	for	extra
slipperiness	will	spread	through	the	fly	population.	After	a	while,	there
will	be	the	same	number	of	frogs	on	the	pond	as	before,	and	the	same
proportion	of	flies	will	be	eaten	each	year.	It	looks	as	if	nothing	has
changed	–	but	the	frogs	have	got	stickier	tongues,	and	the	flies	have	got
more	slippery	bodies.

In	the	real	world,	this	kind	of	thing	is	happening	all	the	time,	in
every	generation,	not	just	as	a	result	of	mutations.	In	each	generation
there	are	some	frogs	with	stickier	tongues	than	others,	and	some	flies
with	slipperier	bodies	than	others,	so	step	by	tiny	step,	as	the
generations	pass,	the	trend	towards	stickier	tongues	and	more	slippery
bodies	is	ratcheted	forward.	There	is	no	obvious	end	to	this	–	frogs	get
better	and	better	at	catching	flies	(one	way	or	another)	while	flies	get
better	and	better	at	escaping	frogs.	Each	has	to	run	as	hard	as	it	can	to



better	and	better	at	escaping	frogs.	Each	has	to	run	as	hard	as	it	can	to
stay	in	the	same	place.

Of	course,	in	the	real	world	there	are	more	than	two	species
interacting	with	one	another.	To	some	extent,	this	just	means	that	there
is	a	lot	more	running	on	the	spot	going	on.	But,	just	as	with	the
connections	within	networks	of	lightbulbs,	there	are	important
differences	between	networks,	arising	from	the	way	the	species	(which
are	now	thought	of	as	nodes	in	a	network)	are	connected.	If	what
happens	to	one	species	affects	every	other	species	directly,	it	is
impossible	for	even	a	pseudo-stable	Red	Queen	situation	to	develop.
There	is	utter	(but	deterministic)	chaos	in	the	system,	because	even
small	changes	have	large	and	in	practice	unpredictable	effects.	But	the
real	world	isn’t	like	that.	In	real	life,	what	happens	to	one	species	affects
only	a	few	other	species	directly,	although	what	then	happens	to	those
species	may	affect	others,	in	a	widening	ripple	of	interactions.	This	is
very	much	like	what	happens	in	the	sparsely	connected	network	of
lightbulbs,	or	in	the	sandpile	game	where	moving	one	grain	of	sand	only
directly	affects	its	immediate	neighbours,	but	the	way	they	move	affects
their	neighbours,	and	so	on.

Another	example	from	something	approximating	real	life	may	help	to
make	the	point.	Foxes	eat	rabbits,	so	what	happens	to	foxes	(if	the
population	of	foxes	goes	up	or	down,	for	any	reason)	affects	rabbits,	and
what	happens	to	rabbits	affects	foxes,	directly.	They	are	linked	nodes	in
the	network.	But	foxes	do	not	eat	grass,	so	at	this	level	what	happens	to
foxes	does	not	affect	grass.	The	fox	and	grass	nodes	are	not	directly
connected	to	one	another.	But	rabbits	do	eat	grass	–	those	two	nodes	are
connected	–	so	what	happens	to	foxes,	by	affecting	rabbits,	in	turn	has



an	effect	on	grass.	More	foxes	means	(other	things	being	equal)	fewer
rabbits,	giving	the	grass	a	chance	to	grow	longer.	And	this	in	turn	will
affect	other	species	that	feed	on	grass,	and	so	on	and	so	on.	Getting	back
to	Kauffman’s	frogs,	if	the	frogs	themselves	(or	their	tadpoles)	are	eaten
by	fish	that	live	in	the	pond,	and	the	fish	are	eaten	by	bears	who	live	in
the	woods	nearby,	if	the	fly	population	crashes	(perhaps	because	people
have	begun	spraying	the	area	with	insecticide),	the	bears	will	go	hungry.
Real	ecological	networks,	of	course,	are	more	complex	than	this,	with
some	(but	not	too	many)	interconnections	–	the	fish	might	eat	flies	as
well	as	frogs,	for	example.	It	is	interesting,	though,	that	such	systems
were	referred	to	colloquially	as	‘the	web	of	life’	even	before	network
theory	was	applied	to	them	by	people	like	Kauffman.

What’s	exciting	about	all	this	is	that	it	seems	that	a	process	of	co-
evolution,	in	which	all	the	species	involved	in	a	network	change
together	when	one	of	them	changes,	will	naturally	push	complex
ecosystems	from	either	extreme	towards	the	interesting	region	of	self-
organized	criticality,	in	the	phase	transition	on	the	edge	of	chaos.	If	a
group	of	organisms	is	locked	into	a	stable	strategy,	a	mutation	involving
one	of	the	species	is	likely	to	open	up	the	network,	allowing	it	to	evolve.
Evolution	by	natural	selection	will	ensure	that	a	change	which	is
detrimental	to	the	species	involved	will	be	washed	away	over	the
generations;	but	a	change	that	is	beneficial	will	spread,	and	by	spreading
it	will	open	up	more	networks,	pushing	the	system	towards	the	edge	of
chaos.	On	the	other	side	of	the	phase	transition,	in	the	chaotic	regime,
the	same	thing	happens	in	reverse.	With	the	rules	of	the	game	of	life
changing	in	every	generation,	any	group	of	individuals	that	manages	to
insulate	itself	from	the	chaos	to	some	extent,	by	reducing	the	number	of



its	connections	to	the	outside	world,	will	get	a	chance	to	evolve,	by
natural	selection,	into	a	state	that	takes	advantage	of	the	opportunities
provided.	The	logic	of	this	hand-waving	argument	is	backed	up	by
numerical	simulations	and	experiments	with	clusters	of	lightbulbs	wired
up	in	different	ways,	carried	out	by	Kauffman	and	his	colleagues.	Simply
by	each	individual	species	acting	to	maximize	its	own	evolutionary
fitness,	the	whole	ecosystem	evolves	towards	the	edge	of	chaos.	This	is
exactly	analogous	to	the	sandpile	model,	in	which	the	addition	(or
removal)	of	a	single	species	from	the	network	corresponds	to	the
addition	(or	removal)	of	a	single	sand	grain	from	the	pile;	it	is	also
essentially	the	same	as	the	lightbulb	model,	with	the	addition	or	removal
of	a	single	species	corresponding	to	flipping	a	single	lightbulb	on	or	off.
Complex	systems	naturally	evolve	towards	the	phase	transition	at	the
edge	of	chaos.

All	of	this	translates	beautifully	into	a	language	that	evolutionary
biologists	were	already	familiar	with,	and	extends	that	model	in	ways
that	were	undreamed	of	by	its	pioneers,	but	which	ought	to	be	familiar
from	what	we	have	learned	about	the	way	classical	thermodynamics	was
extended	by	the	work	of	people	such	as	Ilya	Prigogine.	The	model
involves	what	are	known	as	fitness	landscapes,	and	stems	from	the	work
of	R.	A.	Fisher	(1890–1962;	he	was	knighted	in	1952)	at	the	Rothamsted
Experimental	Station,	a	British	research	centre,	in	the	1920s.	Fisher	was
the	first	person	to	put	evolutionary	biology	on	a	mathematical	footing,
calculating	how	the	distribution	of	genes	in	a	population	changes	as	a
result	of	natural	selection	operating	on	individual	members	of	the
population.	But	Fisher,	like	the	classical	thermodynamicists,	was	only
interested	in	equilibrium	situations	(a	reasonable	enough	first	step),
identifying	the	mathematical	best	possible	solution	to	each	evolutionary



identifying	the	mathematical	best	possible	solution	to	each	evolutionary
problem.

This	approach	was	developed	further	by	the	geneticist	Sewall	Wright
(1889–1988),	working	at	Yale	University	in	the	early	1950s.	The	analogy
he	introduced	is	with	a	landscape,	where	hills	represent	successful
evolutionary	strategies	(‘good	genes’,	or	more	accurately,	good	packages
of	genes	working	together),	and	valleys	represent	unsuccessful
evolutionary	strategies	(‘bad	genes’).	Any	particular	individual	can	be
represented	by	a	single	point	on	the	landscape,	which	is	really	a	kind	of
phase	space,	with	the	hills	as	attractors.	But	because	members	of	a
species	are	not	identical	to	one	another	(one	of	the	key	points,
remember,	about	Darwinian	evolution),	a	species	will	be	represented	on
the	landscape	by	a	little	cluster	of	points,	like	a	little	flock	of	sheep.	The
sheep	who	are	a	bit	higher	up	the	slope	will	do	better	in	each
generation,	leaving	most	offspring,	while	the	ones	who	are	lower	down
the	slope	will	do	worse,	leaving	fewer	offspring.	So	as	the	generations
pass,	the	little	flock	moves	up	the	slope	until	it	reaches	the	peak,	where
it	stays.

This	approach	to	understanding	evolution	is	ideal	when	we	are
considering	what	happens	to	a	single	species	interacting	with	only	a	few
other	species	in	a	stable	environment	–	precisely	the	conditions	that
have	produced	the	variety	of	finches	seen	by	Darwin	on	the	Galápagos.
It	is	thought	that	these	are	all	descended	from	a	few	birds	(perhaps	only
a	single	breeding	pair)	who	found	their	way	to	the	islands	some	time	in
the	past.	These	birds	were	all	originally	members	of	a	single	species,
only	poorly	adapted	to	eat	the	food	they	found	on	the	islands	–	a	little
flock	sitting	in	a	valley	between	the	hills	of	the	fitness	landscape.	Some



members	of	the	flock	evolved	by	developing	longer	beaks,	moving	up
one	particular	hill	in	the	landscape,	while	others	evolved	stouter	beaks,
moving	up	a	different	hill,	until	they	became	separate	species.	The
process	comes	to	an	end	when,	in	one	case,	the	beak	becomes	so	long
and	thin	that	it	cannot	be	used	to	probe	for	food	without	snapping	off,
or,	on	the	other	hand,	when	the	beak	becomes	so	unwieldy	that	it
cannot	be	used	to	manipulate	the	seeds.

The	fitness	landscape,	underpinned	by	Fisher’s	mathematics,	provides
a	beautifully	simple	image;	even	the	mathematics	is	quite
straightforward.	But	there	is	a	problem.	Suppose	the	peak	the	species	has
evolved	to	is	just	a	foothill,	and	there	are	much	higher	peaks	(more
evolutionarily	advantageous	states)	that	it	could	be	on	nearby.	There	is
no	way	for	the	species	to	cross	the	intervening	valley	floor	and	climb
those	peaks,	because	to	do	so	it	would	first	have	to	evolve	towards	a
worse	(less	well	fitted)	state	than	the	one	it	is	in	already.	In	effect,	it	has
evolved	up	a	blind	alley,	from	which	there	is	no	escape.	Fisher’s
landscape	is	not	only	a	static	one,	it	is	one	in	which	species	can	only
achieve	a	local	equilibrium,	and	have	to	stay	there.

The	Red	Queen	effect	is	one	example	of	how	interactions	between
species	change	that	simple	picture.	When	one	species	changes,	either
through	mutation	or,	in	the	most	extreme	case,	through	extinction,	all
the	species	it	interacts	with	are	affected.	The	effect	is	as	if	the	heights	of
the	corresponding	peaks	in	the	landscape	have	changed.	Individual
species	still	evolve	towards	the	peaks	nearest	to	them	on	the	landscape,
but	because	of	co-evolution	the	position	and	size	of	those	peaks	change
all	the	time.	In	the	static	regime,	nothing	changes;	in	the	chaotic	regime,
the	landscape	changes	so	rapidly	that	nothing	interesting	can	ever	get



time	to	happen.	On	the	edge	of	chaos,	the	landscape	is	always	changing,
but	usually	slowly,	and	this	keeps	opening	up	new	evolutionary
possibilities	for	individual	species,	and	groups	of	species,	within	the
ecosystem.	It	is	the	endlessly	changing	landscape,	a	kind	of	rubber
landscape	which	deforms	like	a	slack	trampoline	as	the	species	‘walk

about’	on	the	rubber	surface,7	that	provides	the	opportunity	for	endless
evolution.	In	our	frog	and	fly	example,	the	arrival	of	humans	with	cans
of	insecticide	knocks	down	the	peak	the	flies	were	sitting	on	and	leaves
them	deep	in	a	valley;	but	if	they	do	not	all	go	extinct	they	may	well
evolve	resistance	to	the	insecticide,	moving	up	another	peak	as	the
population	recovers	from	its	setback.	Note	that	this	is	not	a	new	peak	–
it	was	there	all	the	time,	corresponding	to	insecticide-resistance.	But	the
peak	got	higher	once	there	was	insecticide	around,	because	that	made
the	ability	to	resist	insecticide	more	useful.	Even	so,	the	flies	could	not
cross	over	to	it	until	their	previous	peak	collapsed.	Unlike	Fisher’s
scenario,	there	is	no	single	‘best	place’	for	a	species	to	settle	down	in	on
the	evolutionary	landscape;	all	it	can	do	is	move	towards	a	better	place
whenever	the	opportunity	arises,	even	though	what	is	better	in	one
generation	might	be	worse	in	a	few	generations’	time.

Note,	though,	that	this	is	no	longer	solely	about	individual	species
doing	the	moving	towards	a	better	state.	John	Holland,	of	the	University
of	Michigan,	Ann	Arbor,	has	drawn	attention	to	the	importance	of	sub-
units	of	the	ecosystem,	made	up	of	individual	species	working	together
in	groups.	Indeed,	this	image	of	groups	of	individuals	working	together
applies	at	all	levels	from	genes,	where	one	group	of	genes	may	work	as	a
unit	to	control	one	aspect	of	the	workings	of	the	cell,	to	cells,	where	one
group	of	cells	work	together	as	an	organ	such	as	the	liver,	right	up



through	to	species,	where	several	species	may	be	linked	together	in	an
interacting	network,	somewhere	between	an	ESS	and	total
independence.	As	Holland	has	put	it,	‘The	cut	and	try	of	evolution	isn’t
just	to	build	a	good	animal,	but	to	find	good	building	blocks	that	can	be

put	together	to	make	many	good	animals.’8	His	favourite	analogy	is	with
the	way	in	which	‘Identikit’	pictures	used	to	be	put	together,	before	the
days	of	computers,	to	make	an	impression	of	the	face	of	a	criminal
suspect,	based	on	eye-witness	descriptions.	From	a	choice	of	ten	different
facial	features	(hairline	shape,	size	of	nose,	and	so	on),	each	coming	in
ten	varieties,	it	is	surprisingly	quick	and	easy	to	produce	a	‘picture’
resembling	any	chosen	individual	–	surprising,	that	is,	until	you

remember	that	you	are	dealing	with	1010	combinations,	ten	billion
different	faces,	rather	more	than	the	number	of	people	alive	on	Earth
today.	Holland	might	have	gone	even	further,	pointing	out	that	the	cut
and	try	of	evolution	also	operates	to	find	‘good	building	blocks’	in	the
form	of	interacting	networks	of	species	that	operate	in	some	ways	as
distinct	evolutionary	units.	Co-evolution,	not	just	evolution.

Although	he	did	not	express	it	that	way,	this	was	what	Leigh	Van
Valen	had	discovered,	through	his	studies	of	marine	fossils,	which	led
him	to	come	up	with	the	idea	of	the	Red	Queen	effect	in	1973.	He	found
that	any	genus	within	a	group	(for	example,	the	bony	fishes)	has	a
constant	probability	of	going	extinct	and	disappearing	from	the	fossil
record.	It	doesn’t	matter	how	long,	or	how	short,	a	time	the	genus	has
existed	already,	the	chances	of	it	going	extinct	in	any	chosen	interval	of
geological	time	are	identical.	The	same	applies	at	other	levels	in	the	web
of	life.	In	this	sense,	species	get	neither	better	at	surviving	(in	spite	of
evolution)	nor	worse	as	time	passes;	they	die	off	at	random.	Van	Valen’s



interpretation	of	this	evidence	was	that	the	struggle	for	survival	is
always	just	as	hard	as	it	used	to	be.	Since	that	struggle	involves
individuals	interacting	with	one	another,	this	must	mean	that	everyone
gets	more	efficient	all	the	time,	until	something	happens	to	remove	one
species	(or	genus)	from	the	scene.	This	leads	to	a	reshuffling	of	species
among	the	available	ecological	niches,	followed	by	a	new	arms	race
involving	a	lot	more	running	on	the	spot.	All	species	must	evolve	as	fast
as	they	can	just	to	keep	up	with	the	other	species	–	as	much	a	‘Keeping
Up	With	The	Joneses’	effect	as	the	Red	Queen	effect.	One	result	of	all
this	interaction,	which	has	greatly	excited	some	evolutionary	biologists,
is	that	successful	species	actually	get	better	at	evolving	as	time	passes	–	a
mutation	which	enables	a	species	to	adapt	more	quickly	to	its	changing
environment	is	itself	likely	to	be	successful	and	spread	through	a
population.	An	example	of	this	has	been	the	evolution	of	sex,	which	is	a
way	of	reproduction	that	speeds	up	evolution	(by	mixing	genetic
material	from	two	parents	in	one	offspring),	giving	large,	slow-breeding
multi-celled	creatures	like	ourselves	a	chance	to	keep	up	in	the	arms
race	in	competition	with	small,	swiftly	reproducing	organisms	such	as

bacteria	and	parasites.9

We	should	pause	here	and	explain	our	use	of	some	evolutionary
terminology,	which	probably	annoys	serious	evolutionary	biologists	but
which	ought	to	be	clear	to	everybody	and	acceptable	outside	the	halls	of
academe.	In	much	of	this	discussion	we	talk	about	species	going	extinct,
and	the	evolution	of	species	as	a	whole.	Of	course,	we	are	well	aware
that	evolution	operates	at	the	level	of	the	individual	and	that	in	the
struggle	for	survival	it	is	the	least	fit	individuals	that	fail	(by	leaving	no
descendants).	But	if	that	happens	to	enough	individual	members	of	a



species,	then	the	species	goes	extinct.	It	seems	reasonable	to	talk	about
species	evolving	as	a	whole	in	this	way,	even	though	we	know	that	the
underlying	mechanism	is	individual	selection,	and	even	to	talk	about	an
individual	species	‘mutating’	so	that	there	is	a	change	at	one	node	in	the
ecological	network,	which	ripples	out	to	affect	other	species.	After	all,
we	talk	about	a	particular	football	team	competing	for	a	trophy	as	if	it
were	a	single	entity	–	‘City	knocked	out	of	the	cup’	–	even	though	we
know	that	the	team	is	made	up	of	eleven	players	at	any	one	time,	many
more	than	that	over	the	course	of	the	season,	and	relies	also	on	the	skills
of	the	manager	and	other	non-playing	staff.

You	can	see	why	it	is	a	reasonable	shorthand	to	describe	evolutionary
changes	in	the	geological	record	in	terms	of	whole	species	‘mutating’	or
going	extinct,	rather	than	focusing	on	selection	at	the	level	of
individuals,	by	looking	at	a	very	simple	example	of	the	way	in	which
evolutionary	changes	affect	individual	members	of	a	species.	This
happens	in	ways	which	are	far	too	small	to	be	noticed	in	a	human
lifetime,	but	can	lead	to	effects	which	show	up	as	sudden	and	dramatic
changes	in	the	fossil	record,	with	one	species	being	replaced	by	another
in	the	geological	equivalent	of	overnight.	Our	favourite	example	of	how
this	might	work	involves	a	hypothetical	mouse	which	slowly	evolves	into
something	like	an	elephant.	Imagine	that	a	baby	mouse	grew	up	to	be	
th	bigger	than	its	parents,	and	that	the	same	increase	in	size	occurred

in	every	succeeding	generation.	Then	it	would	take	20,000	generations
to	‘evolve’	supermouse,	the	size	of	present-day	elephants.	Mice	breed
very	quickly,	and	elephants	breed	very	slowly,	so	for	the	purpose	of	this
hypothetical	example	we	can	say	that	each	generation	takes	five	years	to
achieve	maturity,	somewhere	between	the	actual	times	for	mice	and



elephants.	So	the	change	from	mouse	to	supermouse	would	occupy
100,000	years.	In	terms	of	the	fossil	timescale,	that	is	instantaneous.
Differentially	dating	fossils	that	have	been	laid	down	just	100,000	years
apart	is	almost	impossible,	and	if	this	kind	of	evolutionary	change	were
taking	place	in	a	species,	what	we	would	see	in	the	fossil	record	is	one
layer	of	strata	with	mouse-sized	remains,	and	the	next	layer	of	strata
with	elephant-sized	remains,	with	nothing	in	between.

In	the	real	world,	such	a	dramatic	change	would	not	occur	in
isolation;	other	species	would	be	affected	by	the	evolution	of
supermouse	(assuming	that	such	a	change	could	happen	at	all),	and	we
would	see	a	whole	suite	of	changes	occurring	‘instantaneously’	in	the
fossil	record.	But	all	of	this	would	be	a	result	of	slow	changes	from	one
generation	to	the	next,	taking	place	in	line	with	the	rules	of	Darwinian
evolution.

It	is	important	to	stress	this,	because	there	has	been	a	lively	debate
among	the	experts	surrounding	what	is	called	by	evolutionary	theorists
‘punctuated	equilibrium’,	a	pattern	seen	in	the	fossil	record	when	there
are	long	intervals	with	little	or	no	evolutionary	change	(except	for
species	becoming	ever	more	finely	fitted	to	their	ecological	niches
through	the	Red	Queen	effect)	‘punctuated’	by	short	(sometimes,
seemingly	instantaneous)	intervals	of	dramatic	change	in	which	some
species	die	out	and	others	evolve	into	new	forms.	This	is	sometimes
presented,	even	by	those	who	should	know	better,	as	conflicting	with	the
ideas	of	Darwinian	evolution,	which	are	then	referred	to	as	‘gradualism’
to	emphasize	the	contrast.	But	there	is	no	conflict.	Even	during	the
intervals	of	seemingly	rapid	change	(the	punctuation	marks	of
evolution),	at	an	individual	level	what	is	going	on	is	still	Darwinian



evolution,	evolution	by	natural	selection	and	survival	of	the	fittest.	It’s
just	that	the	rules	about	what	makes	a	species	fit	have	changed.	And
change	happens	only	slowly	from	one	generation	to	the	next	–	a	mouse
does	not	give	birth	to	an	elephant,	or	the	other	way	round.	Indeed,	what
happened	to	the	Galápagos	finches	that	Darwin	studied,	giving	him	a
key	insight	into	how	evolution	works,	is	an	example	of	punctuated
equilibrium.	The	finches	that	arrived	on	the	islands	were	superbly
adapted	to	a	lifestyle	that	was	appropriate	on	the	mainland.	They
evolved	rapidly	(by	geological	standards,	though	only	with	tiny	changes
from	one	generation	to	the	next)	to	fit	the	ecological	niches	available	on
the	Galapagos,	and	once	they	had	adapted	in	this	way	they	then	changed
only	slightly	as	they	became	fine-tuned	to	their	surroundings.	Darwin
would	have	been	thoroughly	at	home	with	the	idea	of	punctuated
equilibrium,	and	would	have	found	his	ideas	totally	unthreatened	by

it.10

The	sandpile	analogy	helps	to	make	this	clear.	When	the	sandpile	is
in	a	self-organized	critical	state,	it	experiences	sudden	landslides,
interspersed	by	longer	intervals	of	relative	calm,	while	the	sand	grains
are	building	up.	But	each	sand	grain	is	always	subject	to	the	same	laws
of	physics	–	Newton’s	laws	of	motion,	friction,	gravity	and	so	on.	There
is	no	fundamental	difference	between	the	two	situations,	except	one	of
timescale.	If	grains	are	dropped	on	the	pile	every	second,	but	you	only
look	at	the	sandpile	every	half-hour,	it	will	never	look	the	same	twice,
and	will	appear	to	be	in	a	constant	state	of	change.	If	you	look	at	it
every	microsecond,	almost	every	time	you	look	you	will	see	the	sand
grains	in	almost	exactly	the	same	positions	they	were	in	last	time	you
looked,	and	you	will	think	that	the	pile	only	changes	gradually.	If	the



situation	among	the	living	species	of	an	ecological	network	stays	much
the	same	for	a	hundred	million	years,	then	changes	occur	over	a	million
years	or	so,	that	is	punctuated	equilibrium,	even	though	the	species
involved	in	the	changes	might	not	be	aware	of	any	dramatic	changes
going	on	around	them.	If	the	intervals	of	change	lasted	for	a	hundred
million	years,	and	the	intervals	of	calm	for	one	million	years,	we	might
well	talk	about	‘punctuated	chaos’,	but	it	would	also	obey	the	same
evolutionary	rules	applied	to	sparsely	connected	networks.	The	point	is
that	sparsely	connected	networks	naturally	evolve	to	such	a	state,	with
intervals	of	equilibrium	punctuated	by	intervals	of	change,	although	our
understanding	of	such	networks	is	as	yet	far	too	inadequate	to	be	able	to
say	whether	there	is	anything	special	about	the	particular	balance
between	punctuation	and	equilibrium	that	seems	to	have	been	struck	by
the	network	of	life	on	Earth.	We	do,	though,	have	a	good	idea	of	the	last
ingredient	needed	to	drive	that	living	network	to	the	phase	transition	on
the	edge	of	chaos	–	a	small,	but	important,	point	that	Kauffman	missed,
but	which	Per	Bak	and	his	colleagues	laid	bare	in	the	middle	of	the
1990s.

In	all	the	earlier	work	of	this	kind,	using	computer	models	to
simulate	the	evolution	of	networks	of	interacting	species,	the	researchers
had	chosen	a	species	at	random	to	‘mutate’,	and	watched	the	way	the
resulting	ripples	spread	through	the	network	like	an	avalanche	of	sand
grains	in	the	sandpile	model.	This	gave	simulations	that	looked
superficially	very	like	the	sandpile	model,	but	which	did	not	actually
evolve	to	the	edge	of	chaos.	The	breakthrough	came	when	Kim	Sneppen,
from	the	Niels	Bohr	Institute	in	Denmark,	visited	Bak	at	Brookhaven	in
the	United	States	in	1993.	Sneppen	was	interested	in	interactions



between	surfaces	–	an	example	Bak	uses	is	the	way	spilled	coffee	spreads
through	a	paper	napkin,	with	the	interface	being	the	changing	boundary
between	the	wet	part	of	the	napkin	and	the	dry	part	of	the	napkin.	But
Sneppen’s	calculations	apply	to	a	wide	range	of	phenomena	in	physics;
he	found	that	changes	in	the	boundary,	or	interface,	are	most	likely	to
occur	at	places	where	the	value	of	some	appropriate	parameter	is	either
at	its	largest	or	at	its	smallest	–	a	situation	called	‘extremal	dynamics’.	In
the	particular	(almost	trivial)	example	of	the	spilled	coffee,	the	liquid
spreads	more	easily	through	the	napkin	at	locations	where	there	are	the
widest	pores	allowing	the	liquid	to	flow	more	easily.	In	discussions
between	Bak	and	Sneppen	about	the	failure	of	attempts	to	get
simulations	of	ecological	networks	to	evolve	to	the	phase	transition	by
selecting	species	at	random	for	mutation,	the	two	of	them	realized	that	it
might	be	more	appropriate	to	apply	a	form	of	extremal	dynamics	here	as
well.	After	all,	even	in	the	archetypal	sandpile	model,	new	avalanches	do
not	begin	at	random	locations	but	at	the	point	where	the	slope	of	the
sand	is	steepest;	and	earthquakes	always	begin	at	the	point	where	the
strain	that	has	built	up	first	exceeds	some	critical	threshold,	even	if	the
extent	of	the	resulting	earthquake	(like	the	extent	of	the	resulting
avalanche	in	the	sandpile	model)	is	then	governed	by	other	factors.

The	extreme	cases	in	the	ecological	networks	that	people	such	as
Kauffman	and	Bak	had	been	studying	are	the	species	that	are	best	fitted
to	their	environment,	and	the	species	that	are	least	fitted	to	their
environment.	What	would	happen	if	Bak’s	team	re-ran	the	simulations,
but	selected	only	the	least	fit	species	to	change	at	each	step	of	the
simulation?	This	would	be	pure	Darwinian	evolution	–	extinction	of	the
least	fit.	But	it	doesn’t	have	to	be	extinction,	it	could	just	be	change.	The



least	well-adapted	species	in	any	real	ecology	are	not	just	going	to	sit
around	being	badly	fitted;	they	will	either	die	out,	or	they	will	evolve
into	a	better	fit	with	their	surroundings	(like	Darwin’s	finches).	The	best-
fitted	species	will	change	little	(except	through	the	Red	Queen	effect)
unless	something	happens	to	their	surroundings	–	a	frog	that	is	superbly
adapted	to	eating	flies	will	be	in	big	trouble,	for	example,	if	the	flies	go
extinct.	The	least	fit	species	would	be	the	ones	where	any	change	which
didn’t	make	them	go	extinct	would	be	almost	certain	to	be	an
improvement,	sending	them	further	up	the	foothills	of	the	evolutionary
landscape.	If	such	a	species	is	only	on	a	low	hill	to	start	with,	it	is	also
relatively	easy	for	it	to	evolve	off	that	hill,	across	a	valley	and	up	a
higher	hill	nearby.	It	all	made	sense;	and	it	made	even	more	sense	when
the	computer	simulations	were	run.

The	model	that	Sneppen	and	Bak	came	up	with	is	stunningly	simple.
It	just	takes	a	thousand	‘species’	and	represents	each	of	them	by	a	single
random	number,	between	0	and	1,	to	indicate	its	Darwinian	fitness.	A
high	number	corresponds	to	a	species	that	fits	in	well	with	the	whole
network,	and	sits	on	a	high	peak	in	the	fitness	landscape.	A	low	number
corresponds	to	a	species	that	really	is	struggling	to	survive,	and	sits
unsteadily	on	a	low	hill	in	the	fitness	landscape.	In	this	sense,	the
amount	of	‘fitness’	corresponds	to	the	size	of	the	peak	in	the	landscape.
In	order	to	take	account	of	the	sparse	connections	between	the	nodes	in
the	network,	each	of	the	resulting	numbers	was	then	randomly	linked
with	two	others	so	that	each	‘species’	interacts	with	just	two	others	(as	if
the	frogs	only	eat	flies,	and	are	themselves	only	eaten	by	fish).	Then	the
model	was	programmed	to	remove	the	least	fit	member	of	the
population,	and	its	two	partners,	and	replace	them	with	three	‘new’



species	with	fitnesses	assigned	at	random.	These	need	not	be	thought	of
as	literally	being	new	species;	the	point	is	that	the	fitness	of	the	least	fit
member	of	the	network	changes	at	random,	and	this	causes	the	fitness	of
each	of	its	partners	–	you	might	think	of	them	as	its	neighbours,	in	the
ecological	network	–	to	change	at	random,	no	matter	how	fit	they	were
to	start	with.	It	is	the	rubber	landscape	at	work.	Keep	repeating	this
simple	action	iteratively	in	the	computer	and	watch	what	happens.

At	first,	having	set	the	network	up	at	random,	there	are	nodes	with
values	of	fitness	covering	the	entire	range	from	0	to	1.	The	least	fit
‘species’	will	therefore	have	a	very	low	value	of	fitness.	But	when	the
least	fit	species	is	removed	and	replaced	by	another	with	a	fitness
assigned	at	random,	it	is	highly	likely	that	the	new	species	will	have	a
higher	fitness,	because	a	random	number	between	0	and	1	is	likely	to	be
higher	than	the	very	low	number	associated	with	the	old	species.	Simply
by	removing	the	‘least	fit’	species	and	its	two	neighbours	in	each
iteration,	and	replacing	them	by	new	species	with	fitness	assigned	at
random,	these	computer	simulations	very	quickly	raise	the	overall	fitness
of	the	entire	network,	until	all	the	nodes	are	associated	with	relatively
high	peaks.	Specifically,	for	the	rules	we	have	described	here,	the	system
settles	down	with	all	the	species	having	a	fitness	of	at	least	two-thirds.	In
real	life,	this	corresponds	to	a	stable	ecological	network,	with	each
individual	species	occupying	a	high	peak	in	the	fitness	landscape.	Such	a
situation	ought	to	last	for	a	long	time.	But	what	happens	if,	and	when,
one	of	these	species	does	go	extinct,	or	suffers	a	loss	of	fitness	caused	by
a	mutation,	affecting	the	landscape	of	its	two	neighbours?	Now,	the	only
way	is	down.	Replacing	three	species	with	relatively	high	fitness	values
by	species	with	fitness	assigned	at	random	is	more	likely	than	not	to



produce	a	drop	in	the	overall	fitness	of	this	little	cluster	of	nodes.	This
means	that	these	three	new	(or	mutated)	species,	and	their	neighbours,
are	the	ones	most	likely	to	be	affected	by	the	subsequent	iterations,
producing	a	ripple	of	extinctions	(or	at	least,	fitness	reductions)	that
spreads	out	from	the	original	site	of	the	change.	Remember	that	a	fitness
reduction	does	not	necessarily	mean	that	a	species	has	changed;	it	is	the
fitness	landscape	that	changes,	so	that	a	species	superbly	adapted	to	one
situation	finds	itself	in	a	different	situation.	A	kind	of	avalanche,	or
earthquake,	runs	through	the	system,	before	it	adjusts	and	builds	back
up	to	the	state	in	which	all	the	fitness	levels	are	above	two-thirds	and
the	system	can	settle	down	for	another	quiet	interval.	The	model
naturally	produces	a	situation	in	which	intervals	of	stability	are
separated	by	mass	extinctions,	even	though	the	same	rules	apply	during
the	quiet	intervals	and	the	extinctions.	It	should	be	no	surprise	to	learn
that	the	result	is	described	by	a	power	law,	meaning	that	the	extinctions
are	self-similar,	although	the	exact	value	of	the	power	law	(the	steepness
of	the	slope	in	the	power	law	graph)	doesn’t	quite	match	the	power	law
of	actual	extinctions	in	the	fossil	record.

Critics	of	this	work	have	argued	that	the	models	are	simply	too
simple	to	be	realistic,	or	to	provide	any	insight	into	the	complexities	of
real	ecosystems	and	the	way	they	evolve.	That	is	hardly	surprising,	given
how	simple	the	approaches	used	by	Kauffman,	Bak	and	their	colleagues
are.	But	such	criticism	misses	the	point	that	the	simple	models	do	give	a
good	description	of	the	real	world.	If	these	models	failed	to	produce
patterns	of	extinctions	described	by	power	laws,	nobody	would	take
them	seriously.	The	test	of	a	good	model	is	not	how	simple	it	is,	but	how
well	it	provides	insight	into	real	systems.	In	atomic	physics,	for	example,



it	is	at	first	sight	an	almost	ridiculous	simplification	to	treat	atoms	as
being	like	miniature	solar	systems,	with	electrons	‘in	orbit’	around	a
central	nucleus.	We	know	that	atoms	are	more	complicated	than	this.
But	this	simple	model,	developed	by	the	Dane	Niels	Bohr	in	the	second
decade	of	the	twentieth	century,	actually	works	very	well	in	predicting
the	exact	wavelengths	of	the	lines	seen	in	the	spectra	of	different
elements.	It	is	therefore	a	good	model,	even	though	we	know	atoms	are
not	‘really’	like	that.	A	model	that	could	predict	not	only	that	extinctions
obey	a	power	law,	but	also	the	right	value	of	the	power	in	that	law,
would	be	just	as	valuable	in	its	own	way	as	the	Bohr	model	of	the	atom,
and	would	also	be	telling	us	a	deep	truth	about	the	underlying	simplicity
of	the	world.	More	complicated	features	of	the	behaviour	of	atoms	are
described	by	adding	more	detail	to	the	simple	Bohr	model,	without
throwing	away	the	insight	that	it	provides.	The	fact	that	such	simple
models	as	those	of	Kauffman	and	Bak	immediately	reproduce	the
essential	feature	of	real	extinctions,	their	scale	invariance,	suggests	in	a
similar	way	that	the	researchers	are	on	the	right	track,	and	that	they
ought	to	be	able	to	produce	a	closer	match	between	the	models	and	the
real	world	by	adding	in	a	few	more	details	to	make	the	models	more
realistic.	In	fact,	it	turns	out	that	adding	just	one	more	detail	is	enough
to	get	exactly	the	right	power	law.

This	is	still	very	much	work	in	progress,	and	it	is	probably	fair	to	say
that	we	understand	about	as	much	(or	as	little)	about	real	evolutionary
networks	in	the	first	decade	of	the	twenty-first	century	as	Bohr	did	about
real	atoms	in	the	second	decade	of	the	twentieth	century.	But	one	of	the
most	intriguing	refinements	to	this	kind	of	model	came	right	at	the	end
of	the	twentieth	century,	in	1999,	when	Luis	Amaral	of	MIT	and	Martin
Meyer	of	Boston	University	introduced	that	one	crucial	(and	clearly



Meyer	of	Boston	University	introduced	that	one	crucial	(and	clearly
relevant)	detail	to	the	model.	They	added	in	a	simple	representation	of
another	deep	truth	about	the	real	world	–	some	species	eat	other	species.
Amaral	and	Meyer	added	predators	and	prey	to	the	game	devised	by	Bak
and	Sneppen.	Again,	this	is	a	simplified	version	of	the	way	the	real
world	operates,	but	it	produces	a	dramatic	improvement	in	the	match
between	model	and	reality.

In	this	variation	on	the	theme,	there	are	six	layers	in	the	food	chain.
Individual	species	on	each	level	are	allowed	(indeed,	required)	to	feed
on	several	different	species	from	the	level	below,	and	on	each	level	there
are	a	thousand	ecological	niches,	equivalent	to	nodes	in	the	Bak-Sneppen
version	of	the	game.	The	game	starts	with	most	of	these	ecological
niches	empty,	and	a	few	species	randomly	assigned	to	niches	in	the
lowest	level	of	the	chain.	The	rules,	applied	as	usual	in	each	iteration,	go
like	this.	First,	there	is	a	small	probability	that	each	species	in	existence
at	the	beginning	of	the	iterative	step	will	split	in	two	(like	the	splitting
of	ancestral	finches	into	different	species	on	the	Galápagos),	producing	a
new	species	that	is	randomly	assigned	to	one	of	the	empty	niches	in	the
same	level	or	on	the	one	above	or	below	that	of	the	parent	species.	Each
species	that	emerges	in	this	way	is	randomly	assigned	a	few	species	from
the	level	below	which	are	its	prey.	Secondly,	at	each	iteration	a	few	of
the	species	in	the	lowest	level,	chosen	at	random,	go	extinct.	The
difference	from	the	Bak-Sneppen	model	is	that	when	a	species	disappears
in	this	way	it	doesn’t	affect	neighbours	that	are	otherwise	its	equals,	but
the	predators	that	feed	on	it.	Predators	who	lose	more	of	their	food
supply	do	less	well	than	those	who	lose	less	of	their	food	supply,	and	in
extreme	cases	all	of	the	prey	of	one	predator	may	disappear,	so	that	the



predator	itself	goes	extinct,	affecting	predators	in	the	next	layer	up	the
food	chain.	In	a	pattern	that	has	by	now	become	familiar,	with	just	these
simple	rules	at	work	and	random	starting	conditions,	the	game	organizes
itself	into	a	state	on	the	edge	of	chaos,	a	critical	state	in	which	the
disappearance	of	just	one	prey	species	at	the	bottom	of	the	food	chain
(perhaps	simply	because	they	have	all	been	eaten	by	the	predators	in	the
level	above)	can	sometimes	trigger	a	wave	of	extinction	rippling
upwards	through	the	layers	of	predators	and	prey.	Not	only	do	we	once
again	find	that	the	pattern	of	these	waves	is	scale	invariant	and	obeys	a
power	law;	this	time,	the	exact	value	of	the	power	in	that	law	is	the
same	as	the	power	of	the	law	involved	in	real	extinctions	of	life	on
Earth.	Interacting	species	in	an	ecological	network	move	towards	a	self-
organized	critical	state	in	which	mass	extinctions	obeying	a	power	law
will	occur	without	the	help	of	any	outside	intervention	at	all.

And	yet,	we	know	that	there	are	outside	interventions	–	the	classic
example	is	the	meteorite	that	struck	the	Earth	at	the	time	of	the	death	of
the	dinosaurs.	Even	if,	for	the	sake	of	argument,	we	said	that	this	was
not	the	primary	cause	of	the	extinctions	at	the	K-T	boundary,	it	certainly
must	have	had	some	effect	on	life	on	Earth.	Working	out	how	such	an
extra	influence	might	affect	the	pattern	of	extinctions	is	clearly
important,	but	adds	another	layer	of	complexity	to	the	calculations.	As
usual,	the	first	instinct	of	the	modellers	is	to	strip	away	everything	they
don’t	need	from	the	models	and	start	with	the	simplest	possible	new
model	to	begin	to	understand	the	‘new’	phenomenon.	In	this	case,	Mark
Newman	of	Cornell	University	decided	in	the	mid-1990s	to	investigate	a
model	in	which	outside	influences	are	the	only	cause	of	extinctions,
ignoring	the	effects	of	interactions	between	species	on	the	rubber



landscape	of	fitness.	The	hope	is	that	by	looking	both	at	extinctions
caused	by	interactions	between	species	in	the	absence	of	external	shocks,
and	at	extinctions	caused	by	external	shocks	without	interactions
between	species,	we	might	see	which	version	is	closer	to	reality,	and
how	the	two	effects	might	combine.

The	basic	set-up	in	Newman’s	model	is	very	similar	to	the	basic	set-
up	in	the	Bak-Sneppen	model.	The	first	difference	is	that	instead	of	just
the	single	‘least	fit’	species	being	removed,	the	model	chooses	a	fitness
level	(between	0	and	1)	at	random,	and	removes	all	species	with	less
than	this	fitness	in	one	go	–	equivalent	to	an	external	event,	such	as	a
meteorite	striking	the	Earth,	which	takes	out	all	but	the	most	well-
adapted	species.	The	empty	niches	in	the	ecology	are	then	filled	in	by
new	species	with	fitness	(as	ever,	between	0	and	1)	chosen	at	random.
Then,	to	take	account	of	the	fact	that	the	rules	of	the	game	have	changed
(the	evolutionary	landscape	has	shifted),	a	few	of	the	survivors,	the
fittest	species	in	the	original	ecological	network,	are	taken	out	and
replaced	by	others	with	fitness	chosen	at	random.	This	is	equivalent	to
altering	the	fitness	of	the	original	species	in	those	niches.	As	one	final
option	in	setting	the	rules	for	each	particular	run	of	the	computer	model,
it	was	possible	to	select	in	advance	what	kind	of	external	shocks	the
researchers	wanted	to	have	–	there	might	be	a	relatively	high	proportion
of	small	shocks	that	only	took	out	the	least	fit	species,	with	just	a	few
big	shocks	that	wiped	out	nearly	everything	in	the	network;	or	the
model	could	be	set	up	the	other	way	around,	or	with	any	statistical
mixture	of	large	and	small	external	shocks,	although	at	each	iteration
the	model	chose	the	size	of	the	next	shock	at	random	in	accordance	with
the	specified	statistical	rules.	The	surprising	and	dramatic	result	was	that



for	all	but	a	few	extreme	versions	of	this	game	the	system	settles	down
into	a	critical	state	in	which	the	pattern	of	extinctions	obeys	a	power	law
similar	to	the	one	we	see	in	the	pattern	of	extinctions	in	the	actual	fossil

record.	11

One	way	to	think	of	this	is	that	just	as	tension	builds	up	in	an
earthquake	zone	until	something	has	to	give	(but	you	can’t	say	in
advance	how	big	the	‘give’	will	be),	it	is	as	if	gradual	Darwinian
evolution	builds	up	more	and	more	tension	in	the	ecological	network,
through	the	Red	Queen	effect,	until	something	snaps,	and	the	whole
network	(or	perhaps	just	part	of	it)	collapses.	There	is	no	way	to	predict
in	advance	whether	the	next	wave	of	extinctions	to	sweep	across	the
ecological	network	will	be	large	or	small,	just	as	there	is	no	way	to
predict	whether	the	next	earthquake	to	strike	San	Francisco	will	be	large
or	small.	Living	and	non-living	systems	follow	the	same	deep	imperative.

Once	again,	the	model	is	very	simple,	and	we	cannot	pretend	that	it
describes	perfectly	what	happens	to	a	real	ecological	network	when
disaster	strikes	from	outside.	But	what	it	is	telling	us	is	that	the	power
law	pattern	of	extinctions	is	a	very	robust	feature	of	the	way	shocks
affect	such	networks.	It	tells	us,	first,	that	the	kind	of	external	influence
being	applied	is	essentially	irrelevant,	as	long	as	it	kills	things.	Frequent
small	shocks,	occasional	large	shocks,	or	any	mixture	of	the	two
(including	occasional	small	shocks)	produce	the	same	pattern.	So	a
mixture	of	different	natural	occurrences	–	meteorites	striking	the	Earth,
bursts	of	intense	volcanic	activity,	Ice	Ages,	or	whatever	–	each	with
their	own	pattern,	will	combine	to	produce	exactly	the	same	picture	of
power	law	extinctions.	Even	better,	as	we	have	already	seen,
evolutionary	changes	in	the	ecological	network	alone,	without	any



external	shocks,	also	produce	the	same	power	law	pattern.	All	of	this
explains	why	the	actual	pattern	we	see	in	the	record	of	fossil	remains
distributed	through	time	is	so	simple.	All	of	the	different	effects	produce
the	same	pattern!	We	may	never	be	able	to	say	whether	the	events	at	the
K-T	boundary	were	primarily	a	result	of	meteorite	impact,	or	of
evolutionary	change,	or	major	volcanic	activity,	but	only	that	some
mixture	of	these	(and	possibly	other)	effects	provided	the	trigger	for	that
wave	of	extinctions.	As	in	Agatha	Christie’s	Murder	on	the	Orient	Express,
everyone	may	be	guilty.

From	the	perspective	of	biologists,	or	geologists,	or	astronomers,	each
hoping	to	find	proof	of	the	validity	of	their	own	pet	hypotheses,	this
might	be	frustrating;	but	from	the	point	of	view	of	someone	trying	to
understand	how	complex	networks	of	interacting	life-forms	evolve,	it	is
highly	interesting,	and	even	encouraging.	It	suggests	that	in	spite	of	the
extreme	simplicity	of	all	these	models	we	have	indeed	discovered	a
fundamental	truth	about	the	way	nature	works,	a	truth	which	applies	to
any	system	driven	away	from	equilibrium,	including	the	particular
systems	we	are	interested	in,	living	systems.	Over	an	extremely	wide
range	of	possibilities,	whatever	conditions	you	start	out	with	and
whatever	shocks	you	apply	to	the	living	systems	(external	or	internal,	or
both),	you	arrive	at	the	self-organized	critical	state	on	the	edge	of	chaos,
where	even	a	small	trigger	can,	on	occasion,	produce	a	very	large
change	in	the	system	as	a	whole.	Life	really	is	like	that.

As	Newman’s	work	emphasizes,	when	the	physical	environment
changes,	the	fitness	landscape	changes.	But	life	itself	also	changes	the
fitness	landscape,	and	the	fate	of	individual	components	of	life	on	Earth
at	any	particular	moment	in	history	depends	on	the	way	the	two



influences	interact.	A	beautiful	example	is	provided	by	the	greatest	of	all
mass	extinctions,	the	one	that	occurred	at	the	end	of	the	Permian.	We
have	seen	that	a	small	trigger	could	have	been	responsible	even	for	that
great	wave	of	extinctions;	but	this	would	only	have	been	possible	if	most
of	the	species	around	at	the	time	were	indeed	connected	in	one
ecological	web.	Today,	if	a	disaster	of	some	kind	struck	North	America
(and	remember	that	in	this	context	a	disaster	might	be	caused	by	a
single	species	going	extinct	and	triggering	a	wave	of	extinctions),	the
effects	might	ripple	out	across	both	North	and	South	America.	But	it	is
hard	to	see	how	they	would	be	of	much	concern	to	the	species	that	lived
in	Australia,	Africa	or	Eurasia.	That	is	one	reason	why	people	invoke
truly	global	events,	such	as	the	aftermath	of	a	giant	meteorite	impact,	in
an	attempt	to	explain	global	mass	extinctions.	But	at	the	end	of	the
Permian,	almost	all	of	the	land	mass	of	our	planet	was	combined	in	one
supercontinent,	Pangea.	That	provided	the	opportunity	for	essentially	all
of	life	on	the	surface	of	the	Earth	and	in	the	shallow	seas	bordering	that
supercontinent	to	be	part	of	a	single	network.	A	shock	affecting	one	part
of	that	network	(a	small	shock	from	outside,	or	a	species	going	extinct	as
a	result	of	evolutionary	pressures	alone)	could	have	rippled	out	to	engulf
almost	everything	alive	at	the	time.	There	is	no	proof	that	this	is	what
happened	then.	There	never	could	be.	But	that	is	not	the	point.	The
point	is	that	250	million	years	ago,	at	the	end	of	the	Permian,	a	small
trigger	could	have	caused	the	extinction	of	most	species	around	at	that
time,	whereas	a	comparable	small	trigger	affecting	one	continent	today
could	not	produce	such	a	large	global	wave	of	extinctions.	The	physical
environment	and	the	biological	environment	are	interconnected,	much
more	subtly	than	it	seems	at	first	sight.



But	could	the	connection	operate	the	other	way	around?	Could	the
biological	environment	of	the	Earth	also	affect	the	physical	environment,
so	that	the	two	together	form	part	of	a	single	network	obeying	the	same
deeply	simple	set	of	rules?	Such	a	speculation	is	the	kernel	of	the	‘Gaia
hypothesis’	put	forward	by	the	independent	British	scientist	Jim
Lovelock.	Lovelock’s	insight,	which	grew	into	the	Gaia	hypothesis,	dates
back	to	1965,	and	predates	much	of	the	work	on	complexity	and
emergence	that	we	have	been	describing.	But	taking	Lovelock’s	ideas	on
board	now	extends	the	study	of	chaos,	complexity	and	emergence	to
encompass	the	whole	of	our	planet,	and	to	provide	hints	at	the	way	life
may	have	evolved	on	worlds	beyond	our	Solar	System.



7
Life	Beyond

The	big	difference	between	the	way	we	have	been	looking	at	life	so	far,
and	the	way	we	are	going	to	look	at	life	from	now	on,	is	that	previously
we	were	looking	at	life	from	the	inside	out,	while	now	we	are	going	to
look	at	life	from	the	outside	in.	You	can	study	the	way	molecules	like
amino	acids	and	DNA	interact	inside	cells,	and	the	way	cells	work
together	to	make	up	a	body,	and	get	a	lot	of	insight	into	how	life	works.
Or	you	can	watch	a	human	being	(or	a	dog,	or	a	jellyfish)	going	about
their	daily	life,	and	get	a	different	perspective	on	what	life	is	all	about.

The	shift	in	perspective,	which	provides	new	insights	into	the	nature
of	life	on	Earth	as	a	whole,	came	about	as	a	result	of	two	things:	a
spectacular	image,	and	the	work	of	one	man,	both	of	them	linked	to	the
exploration	of	space.	The	image	was	a	photograph	taken	by	the	Apollo
astronauts,	showing	the	Earth	as	our	home	in	space,	a	single	blue-white
oasis	of	life	surrounded	by	a	black	desert.	The	man	was	Jim	Lovelock,
who	came	up	with	the	idea	that	living	and	non-living	components	of	the
terrestrial	environment	interact	in	a	network	which	maintains	stable
conditions	suitable	for	life	on	Earth.	His	insight	was	directly	based	on
the	principles	of	thermodynamics	and	the	differences	between
equilibrium	and	non-equilibrium	systems	that	we	have	already
discussed,	even	though,	because	of	Lovelock’s	background,	that	insight
came	quite	independently	from	the	work	we	have	already	described



came	quite	independently	from	the	work	we	have	already	described
concerning	the	application	of	non-equilibrium	thermodynamics	to
situations	involving	systems	at	the	edge	of	chaos.

Lovelock	was	born	in	1919,	and	after	leaving	the	University	of
Manchester	in	1941	with	a	degree	in	chemistry	he	spent	two	decades	in
medical	research,	developing	his	skills	as	a	‘hands	on’	experimenter	who
designed	and	built	much	of	his	own	equipment.	It	was	only	at	the
beginning	of	the	1960s	that	he	took	the	first	steps	towards	the
independence	for	which	he	later	became	famous,	eventually	being
funded	by	the	income	from	the	scientific	instruments	he	invented,	and
free	to	do	research	on	anything	he	liked,	although	he	had	always	been
independently	minded	and	non-conformist	even	by	the	sometimes

eccentric	standards	of	scientific	researchers.1	The	first	steps	towards	that
independence	involved	working	for	NASA	and	the	Jet	Propulsion
Laboratory	(JPL)	as	a	consultant	on	the	design	of	instruments	for
spacecraft	intended	to	land	on	the	Moon	and	Mars	and	analyse	the
samples	of	surface	material	they	found	there.	After	contributing	all	he
could	to	the	chemical	side	of	the	programme,	Lovelock	gravitated
towards	the	engineers	designing	the	hardware,	becoming,	as	a	person
who	could	speak	both	languages,	a	link	between	them	and	the	biologists
making	plans	to	search	for	evidence	of	life	on	Mars.	Most	readers	of	this
book	probably	do	not	remember	the	primitive	state	of	ordinary	domestic
electronic	equipment	in	the	1960s,	when	a	decent	living	could	be	made
as	a	TV	repair	man.	The	thought	of	launching	that	kind	of	equipment
into	space,	landing	it	on	Mars,	and	expecting	it	to	work	and	send	back
useful	information	to	Earth	using	a	transmitter	with	a	power	of	just	100
watts	(that	of	an	ordinary	light-bulb),	seemed	fantastic	to	most	people.



As	Lovelock	puts	it,	the	engineering	required	was	about	as	far	in
advance	of	the	engineering	used	for	a	domestic	TV	set	of	the	time	as	that
TV	was	in	advance	of	the	engineering	of	Roman	times.	It	did	work;	but
there	was	a	tight	limit	on	how	much	information	could	be	sent	back	by
the	feeble	transmitter,	which	made	deciding	just	what	to	measure	–	if
the	lander	made	it	to	the	surface	of	Mars	–	a	matter	of	urgent	priority.

The	key	insight	which	led	him	to	the	concept	of	Gaia	came,	Lovelock
recalls,	in	September	1965.	By	that	time,	he	was	based	back	in	England,

but	still	a	regular	visitor	to	JPL	as	a	consultant.2	On	one	of	those	visits,
in	1964,	he	sat	in	on	a	meeting	of	a	team	discussing	the	kind	of
experiments	to	include	on	a	lander	in	order	to	search	for	traces	of	life	on
Mars.	He	was	struck	by	the	fact	that	all	of	the	ideas	being	discussed	were
based	on	the	assumption	of	finding	the	proverbial	‘life	as	we	know	it’	–
as	Lovelock	says,	the	experiments	would	have	been	good	at	finding	life
in	the	Mojave	desert,	just	to	the	east	of	the	JPL	base	near	Los	Angeles,
but	nobody	seemed	to	be	considering	the	possibility	that	life	on	Mars
might	be	completely	different	from	life	even	under	extreme	conditions
on	Earth.	He	suggested	that	what	was	needed	was	an	experiment	that
could	look	for	the	general	attributes	of	life,	rather	than	specific	kinds	of
life,	and,	when	challenged	to	explain	what	kind	of	experiment	could	do
that,	replied	that	what	was	needed	was	an	experiment	to	look	for
entropy	reduction.	As	Lovelock	appreciated,	and	as	we	have	seen	earlier
in	this	book,	living	systems	characteristically	bring	local	order	to
systems,	making	entropy	‘run	backwards’	as	long	as	they	have	an
external	source	of	energy	to	feed	on.	In	the	best	traditions	of	the	‘can	do’
ethos	of	those	early	days	of	space	exploration,	Lovelock	was	given	a
couple	of	days	to	come	up	with	a	practicable	idea	for	an	experiment	to



measure	entropy	reduction,	in	effect	being	told	to	‘put	up,	or	shut	up’.
And	once	his	mind	was	concentrated	on	the	problem,	it	proved
disarmingly	easy	to	solve.	The	best	way	to	look	for	entropy	reduction
processes	at	work	on	Mars	would	be	to	measure	the	chemical
composition	of	its	atmosphere.	If	there	were	no	life	on	Mars,	the	gases	in
the	atmosphere	would	be	in	a	state	of	thermodynamic	and	chemical
equilibrium,	dominated	by	stable	compounds	such	as	carbon	dioxide.	If
there	were	life	on	Mars,	then	the	waste	products	from	life	processes
would	be	dumped	in	the	Martian	atmosphere,	providing	reactive	gases
such	as	methane	and	oxygen,	which	would	lower	the	entropy	of	the
atmosphere.

There	were	other	possibilities,	some	of	which	Lovelock	later	spelled
out	in	a	paper	in	the	journal	Nature,	including	the	possibility	of	listening
for	and	analysing	sounds	in	the	Martian	atmosphere.	As	we	have	seen,
the	sounds	made	by	living	things	contain	information	(negative
entropy),	and	are	characterized	as	 	‘noise’,	quite	unlike	the	white	noise
of	random	fluctuations.	Whether	it	was	the	Martian	equivalent	of	bird
song,	or	chirping	crickets,	or	Mozart,	a	simple	analysis	of	sound	patterns
could	reveal	the	presence	of	life.	These,	and	other	ideas,	intrigued	the
planners	at	JPL	(even	though	many	of	the	biologists	remained
unimpressed).	NASA	planners	were	equally	impressed,	and	to	Lovelock’s
astonishment	he	became	Acting	Chief	Scientist	in	charge	of	developing
such	physical	life-detection	experiments	for	a	proposed	Mars	mission.	It
was	too	good	to	be	true.	In	September	1965,	funding	for	the	proposed
mission	failed	to	get	the	approval	of	the	US	Congress,	and	the	less
ambitious	Viking	project,	that	did	land	instruments	on	Mars	in	1975,
ended	up	with	the	standard	package	of	biological	experiments,	some	of



them	based	on	Lovelock’s	designs	–	the	biologists	were	willing	to	make
use	of	his	technical	expertise,	even	if	they	distrusted	his	biological
insight.	When	asked	how	he	felt	about	seeing	so	much	effort	go	into	a
project	where	the	outcome	was	a	foregone	conclusion,	he	said	that	it	felt
like	‘designing	a	robot	to	look	for	signs	of	life	in	the	Sahara	desert	and
equipping	it	with	a	fishing	rod’.	We	know	that	fish	exist	and	are
examples	of	living	systems,	so	finding	a	fish	in	the	Sahara	would	be
proof	of	life	in	the	desert.	But	the	negative	results	from	the	biology
experiments	on	the	Viking	landers	actually	revealed	little	or	nothing
about	the	presence	of	life	on	Mars	except	that	it	is	not	the	kind	of	life
found	in	the	Mojave	desert,	just	as	the	failure	of	a	fishing	expedition	to
the	Sahara	proves	only	that	there	are	no	fish	in	the	desert,	not	that	there
is	no	life	there.	To	this	day,	the	best	evidence	that	there	is	no	life	on
Mars	comes	not	from	space	probes,	but	from	spectroscopic	studies	of	the
composition	of	the	Martian	atmosphere	–	spectroscopic	studies	which,
coincidentally,	were	also	first	reported	in	September	1965,	ten	years
before	the	Viking	landers	carried	their	superbly	designed	but	useless
‘fishing	rods’	down	to	the	Martian	surface.

It	was	that	same	month	that	Lovelock	happened	to	be	at	JPL	when
news	came	in	that	astronomers	at	the	French	Pic	du	Midi	Observatory
had	obtained	detailed	spectroscopic	information	about	the	atmosphere
of	Mars	from	their	analysis	of	light	from	the	planet	in	the	infrared	part
of	the	spectrum.	Spectroscopy	is	the	process	of	analysing	the	light	from
an	object	by	splitting	it	up	into	the	rainbow	spectrum,	using	a	prism	or
some	other	device,	and	looking	at	the	lines	in	the	spectrum	produced	by
different	atoms	or	molecules	in	the	object	being	studied.	These	lines
resemble	the	pattern	of	stripes	in	a	bar	code,	and	are	just	as	individual;



one	particular	pattern	will	unambiguously	reveal	the	presence	of	iron,
say,	while	others	(more	relevant	in	the	present	context)	are	associated
with	oxygen,	or	methane,	or	carbon	dioxide.	The	French	observations
showed	for	the	first	time	that	the	atmosphere	of	Mars	is	almost	entirely
composed	of	carbon	dioxide,	with	only	traces	of	other	gases	present.	It	is
a	stable,	unreactive	atmosphere	in	a	state	of	high	entropy,	corresponding
to	thermodynamic	equilibrium	–	and	as	we	have	seen,	nothing
interesting	happens	in	thermodynamic	equilibrium.	The	very	month	that
Lovelock’s	hopes	of	sending	an	entropy-measuring	experiment	to	Mars
were	dashed,	these	ground-based	observations	showed	that	there	was	no
need	for	the	experiment.	The	relevant	measurements	had	been	made	for
him,	and	showed	unambiguously	that	Mars	is	a	dead	planet	today	(they
say	nothing,	of	course,	about	what	conditions	might	have	been	like	on
Mars	millions,	or	billions,	of	years	ago).

It	was	the	arrival	of	the	news	from	France	that	set	Lovelock	thinking
about	the	contrast	between	the	Martian	atmosphere,	dominated	by
carbon	dioxide,	and	the	terrestrial	atmosphere,	dominated	by	nitrogen
but	containing	about	21	per	cent	oxygen,	one	of	the	most	reactive	gases,
and	only	traces	of	unreactive	carbon	dioxide.	Nitrogen	in	the
atmosphere,	Lovelock	knew,	is	constantly	involved	in	reactions	with
oxygen	in	the	atmosphere	(a	kind	of	slow	burning),	ultimately	to	make
nitric	acid,	which	dissolves	in	the	sea	to	make	stable	nitrates,	which	are
broken	down	by	bacteria	(using	the	energy	of	sunlight)	to	return
nitrogen	to	the	air.	It	came	to	Lovelock,	‘suddenly,	just	like	a	flash	of
enlightenment’,	that	for	the	atmosphere	of	the	Earth	to	stay	in	this
seemingly	stable	state	for	hundreds	of	millions	of	years	‘something	must
be	regulating	the	atmosphere	and	so	keeping	it	at	its	constant



composition.	Moreover,	if	most	of	the	gases	came	from	living	organisms,

then	life	at	the	surface	must	be	doing	the	regulation.’3	Without	pausing
to	think	it	through	further,	he	blurted	out	the	insight	to	his	companions
at	the	time,	a	NASA	colleague	called	Dian	Hitchcock,	and	another	visitor
to	JPL,	the	astronomer	Carl	Sagan.	This	was	the	seed	from	which	the
idea	of	Gaia,	the	Earth	as	a	self-regulating	system,	grew	(the	name	was
suggested,	incidentally,	by	one	of	Lovelock’s	neighbours	in	England,	the
writer	William	Golding).

To	put	it	in	a	slightly	different	perspective,	you	might	ask	what
would	happen	to	all	of	the	highly	reactive	oxygen	in	the	Earth’s
atmosphere	if	it	were	not	constantly	being	renewed	by	the	action	of	life.
Take	all	life	away	from	the	planet,	and	within	a	very	short	time	all	the
oxygen	would	be	locked	up	in	stable	chemical	compounds	such	as
nitrates,	carbon	dioxide,	water,	iron	oxides	and	silicate	rocks.	To	be
precise,	without	the	intervention	of	life,	all	the	oxygen	in	the
atmosphere	would	get	locked	away	in	less	than	ten	million	years.	That	is
a	measure	of	how	sensitive	the	seemingly	stable	physical	environment	of
our	planet	is	to	the	presence	(or	absence)	of	life.	This	isn’t	too	worrying
on	a	human	timescale	–	the	popular	myth	that	if	the	Amazon	rainforest
disappeared	tomorrow	we	would	all	suffocate	is	far	from	the	truth	–	but
ten	million	years	represents	only	about	0.2	per	cent	of	the	life	of	the
Earth	to	date.	If	you	are	an	astronomer	who	happens	to	observe	a	planet
like	the	Earth	and	notice	that	it	has	an	oxygen-rich	atmosphere,	that
either	means	you	are	witnessing	a	rare,	transient	event	on	that	planet,	or
that	the	atmosphere	is	being	maintained	in	a	state	far	from	equilibrium.

The	idea	that	life	may	be	part	of	a	self-regulating	system	that
determines	the	physical	nature	of	the	surface	of	the	Earth	today	(at	least



in	the	‘life	zone’,	a	thin	layer	from	the	bottom	of	the	ocean	to	the	top	of
the	troposphere,	about	15	kilometres	above	our	heads)	met	with	a
hostile	reception	from	biologists	initially,	and	still	has	its	opponents,
many	of	them	put	off	by	what	they	(wrongly)	see	as	its	mystic,	quasi-
religious	overtones.	There	is	also	a	mystic,	quasi-religious	Gaia
movement	(about	as	irritating	to	Lovelock	as	the	Tolkien	Society	was	to
J.	R.	R.	Tolkien),	which	is	based	on	a	misunderstanding	of	what
Lovelock	and	his	colleagues	were	saying.	And	then	there	are	those	who
completely	misunderstand	what	the	whole	thing	is	about.	My	copy	of	the
CD	version	of	the	Encyclopaedia	Britannica,	which	really	ought	to	know
better,	says	that	‘the	Gaia	hypothesis	is	highly	controversial	because	it
intimates	that	individual	species	(e.g.	ancient	anaerobic	bacteria)	might
sacrifice	themselves	for	the	benefit	of	all	living	things’.	It	certainly	does
not!	That	sentence	makes	about	as	much	sense	as	saying	that	Darwinian
theory	is	highly	controversial	because	it	intimates	that	rabbits	sacrifice
themselves	for	the	good	of	foxes.	So	perhaps	we	should	spell	out	that
Lovelock	is	not	saying	that	Gaia	is	God,	or	that	Mother	Earth	is	looking
after	us,	or	that	one	species	makes	sacrifices	for	the	sake	of	the	whole.
He	has	simply	found	a	way	of	describing	all	of	the	processes	in	which
life	is	involved	on	Earth,	including	many	processes	that	have
traditionally	been	thought	of	as	non-living	physical	processes,	as	part	of
a	complex	network	of	interactions,	a	self-regulating	(or	self-organizing)
system,	which	has	evolved	to	an	interesting	but	critical	state	in	which
balance	may	be	maintained	for	very	long	intervals	by	any	human
standard,	but	in	which	sudden	fluctuations	away	from	equilibrium
(analogous	to	the	punctuated	equilibrium	of	biological	evolution)	can
occur.	In	the	language	of	the	previous	chapter,	he	is	saying	that	the



behaviour	of	life	on	Earth	alters	the	physical	landscape	(where	‘physical’
includes	things	like	the	composition	of	the	atmosphere)	as	well	as	the
biological	landscape,	and	that	both	these	changes	affect	the	overall
fitness	landscape,	with	feedback	a	key	component	of	the	interactions.	In
the	overall	context	of	the	ideas	discussed	in	this	book,	the	concept	of
Gaia	is	a	logical	and	straightforward	development	from	what	has	gone
before;	the	surprise,	which	indicates	the	power	of	Lovelock’s	intuition,	is
that	he	began	to	develop	the	concept	of	Gaia	before	many	of	the	ideas
we	have	discussed	here	had	themselves	become	respectable	science,	so
that	it	is	only	with	hindsight	that	we	can	now	see	how	it	all	fits	together,
and	think	(echoing	Thomas	Henry	Huxley’s	comment	when	he	first
learned	from	Darwin	of	the	theory	of	evolution	by	natural	selection)
‘how	extremely	stupid	not	to	have	thought	of	that	myself’.

There	is	no	need	to	detail	the	entire	story	of	how	Gaia	became
respectable	science,	but	with	the	benefit	of	that	hindsight	we	can	pick
out	two	examples	of	Gaia	at	work,	one	a	theoretical	model	and	the	other
taken	from	the	real	world,	which	bring	out	the	ways	in	which	self-
regulation	results	from	the	interaction	between	biological	and	physical
components	of	a	living	planet.	The	first	of	these,	a	model	called
Daisyworld,	is	particularly	apposite	since	it	builds	directly	from,	and
solves,	a	puzzle	presented	to	Lovelock	by	Sagan	soon	after	he	had	his
moment	of	revelation	at	JPL;	it	is	also	a	neat	example	of	the	main	theme
of	our	book,	the	idea	of	emergence,	with	the	whole	being	greater	than
the	sum	of	its	parts.	And	it	is,	says	Lovelock,	‘my	proudest	invention’.

The	puzzle	that	Daisyworld	solves	is	known	to	astronomers	as	the
‘faint	young	Sun	paradox’,	although	it	was	really	only	ever	a	puzzle,	not
a	paradox,	and	thanks	to	Lovelock	it	is	no	longer	even	a	puzzle.	The



puzzle	stems	from	the	fact	that	astronomers	are	able	to	say	with	a	great
deal	of	confidence	that	the	Sun	gave	off	much	less	heat	when	it	was
young	than	it	does	today.	They	know	this	by	combining	information
about	nuclear	interactions	obtained	in	experiments	here	on	Earth	with
computer	simulations	of	the	conditions	inside	stars,	and	comparing	the
results	of	their	calculations	with	information	about	the	energy	output
and	composition	of	stars	of	different	sizes	and	ages,	obtained	by
spectroscopy.	This	is	one	of	the	great	(and	largely	unsung)	achievements
of	twentieth-century	physics,	but	we	do	not	have	room	to	go	into	the
details	here,	and	you	will	simply	have	to	accept	for	now	that

astronomers	do	know	how	stars	work.4	The	relevant	point	is	that	we	can
say	with	confidence	that	when	the	Solar	System	was	young	the	Sun	was
between	25	and	30	per	cent	cooler	than	it	is	today	–	or,	to	put	it	the
other	way	around,	since	it	settled	down	as	a	stable	star	the	energy
output	of	the	Sun	has	increased	by	between	33	and	43	per	cent.	The
Solar	System	had	settled	down	into	more	or	less	its	present	configuration
by	about	4.5	billion	years	ago,	and	we	know,	from	fossil	evidence	in	the
oldest	surviving	rocks	on	the	surface	of	the	Earth,	that	both	liquid	water
and	life	existed	on	the	surface	of	our	planet	by	4	billion	years	ago.	The
puzzle	is	why	the	increase	in	heat	output	of	the	Sun,	roughly	40	per	cent
over	four	billion	years,	did	not	boil	the	surface	of	the	planet	dry	and
wipe	it	clean	of	life.

There	is	no	problem	in	explaining	why	the	Earth	was	not	a	frozen
ball	of	ice	when	the	Sun	was	cool.	We	now	know	that	the	atmosphere	of
Venus,	like	that	of	Mars,	is	dominated	by	carbon	dioxide,	and	carbon
dioxide,	along	with	water	vapour,	is	a	major	constituent	of	the	gases
released	by	volcanic	activity.	There	is	no	reason	to	think	that	the



atmosphere	of	the	early	Earth	was	any	different	from	the	atmospheres	of
its	two	nearest	planetary	neighbours,	and	an	atmosphere	rich	in	carbon
dioxide	would	be	good	at	trapping	heat	from	the	Sun	near	the	surface	of
the	planet,	and	keeping	it	warm	through	the	so-called	greenhouse	effect.
Although	it	is	not	the	main	reason	why	the	air	in	a	greenhouse	stays
warm	(that	is	largely	because	the	glass	roof	of	the	greenhouse	stops	the
hot	air	rising	by	convection	and	escaping),	the	greenhouse	effect	is	easy
to	understand.	Visible	light	from	the	Sun	passes	through	gases	like
carbon	dioxide	(and,	indeed,	through	oxygen	and	nitrogen)	without
being	absorbed,	and	warms	the	surface	of	the	Earth.	That	warm	surface
re-radiates	its	energy	back	towards	space,	but	at	longer	wavelengths,	in
the	infrared	part	of	the	spectrum.	Carbon	dioxide	(and	also,	as	it
happens,	water	vapour,	but	not	nitrogen	or	oxygen)	absorbs	some	of	this
infrared	radiation,	and	then	re-radiates	the	energy	it	has	absorbed	in	all
directions,	with	some	going	back	down	towards	the	surface	and	warming
the	planet,	and	some	escaping	into	space.	The	overall	result	is	that,
viewed	from	the	outside,	there	is	a	dip	in	the	spectrum	of	light	from	the
surface	of	the	planet	at	the	wavelengths	where	it	is	being	absorbed	in
the	atmosphere.	An	astronomer	on	Mars,	armed	with	a	suitably	sensitive
telescope	and	spectrometer,	could	tell	that	there	was	a	trace	of	carbon
dioxide	in	the	atmosphere	of	the	Earth	by	measuring	this	characteristic
infrared	radiation,	just	as	the	Pic	du	Midi	team	identified	carbon	dioxide
in	the	atmosphere	of	Mars.	But	there	is	a	much	smaller	proportion	of
carbon	dioxide	in	the	atmosphere	of	the	Earth	than	in	that	of	Mars.



Figure	7.1	A	comparison	of	the	spectra	of	Venus,	Earth	and	Mars	immediately	shows	which	of	the
three	planets	is	in	a	non-equilibrium	state	and	a	likely	home	for	life.

The	power	of	the	greenhouse	effect	can	be	seen	by	contrasting	the
average	temperature	at	the	surface	of	the	Earth	today	with	the	average
temperature	of	the	airless	Moon,	which	is	essentially	at	the	same
distance	from	the	Sun	that	we	are.	On	the	Moon,	the	average	surface
temperature	is	–18	°C;	on	Earth,	the	average	surface	temperature	is	15
°C.	The	difference,	an	increase	of	33	°C,	is	all	down	to	the	presence	of
just	0.035	per	cent	carbon	dioxide	in	the	atmosphere,	plus	water	vapour
and	traces	of	things	like	methane,	which	are	also	greenhouse	gases.
More	than	99	per	cent	of	our	atmosphere	–	the	nitrogen	and	the	oxygen
–	does	not	contribute	to	the	greenhouse	effect	at	all.	If	so	little	in	the
way	of	greenhouse	gases	today	can	have	such	a	big	effect,	it	is	easy	to
see	why	the	temperature	of	the	young	Earth	never	fell	below	freezing
even	when	the	Sun	was	faint.	But	the	Earth	hasn’t	just	failed	to	freeze
when	it	was	young;	it	has	failed	to	fry	as	it	has	aged,	and	has	actually
maintained	a	remarkably	uniform	temperature	for	billions	of	years	as	the



Sun	has	grown	hotter.

It	is	quite	easy	to	think	of	ways	in	which	the	temperature	of	the
planet	could	have	kept	constant	thanks	to	changes	in	the	composition	of
the	atmosphere,	and	people	such	as	Carl	Sagan	had	produced	various
hand-waving	arguments	along	these	lines	before	Lovelock	came	up	with
the	notion	of	Gaia.	But	what	those	arguments	lacked	was	any
justification,	except	the	desire	of	the	theorists	to	maintain	a	constant
temperature	on	Earth.	What	natural	process	could	lead	to	such	stability?
Nobody	knew.	So	was	it	just	blind	chance?	Whatever	the	reasons,	what
you	need	to	do,	of	course,	is	to	steadily	reduce	the	amount	of
greenhouse	gases	in	the	atmosphere	as	the	Earth	ages,	to	compensate	for
the	increasing	heat	from	the	Sun.	It	is	straightforward	to	see	in	a	general
way	how	this	might	have	happened.	The	first	photosynthesizing	life-
forms	on	Earth	(those	‘ancient	anaerobic	bacteria’	that	the	Britannica
refers	to)	would	have	taken	carbon	dioxide	out	of	the	air	and	used	it	in
building	their	bodies,	but	they	would	have	released	methane	into	the	air
in	its	place,	another	greenhouse	gas	but	with	different	infrared-absorbing
properties	from	carbon	dioxide.	When	the	bacteria	are	more	active,	the
balance	shifts	in	favour	of	methane;	when	they	are	less	active	the
balance	shifts	in	favour	of	carbon	dioxide.

The	key	to	beginning	to	understand	how	this	might	work	in	nature
was	to	introduce	feedback	into	the	calculations.	In	a	simple	model	which
took	account	of	the	increasing	heat	output	of	the	Sun,	Lovelock	was	able
to	show	that	by	allowing	bacteria	to	grow	at	a	maximum	rate	when	the
temperature	is	25	°C,	but	less	vigorously	at	higher	or	lower
temperatures,	and	not	at	all	when	the	temperature	fell	below	0	°C	or
rose	above	50	°C,	the	temperature	could	be	held	steady	for	the	first



billion	years	or	so	of	the	history	of	the	Earth.	Then,	other	processes
kicked	in,	notably	the	emergence	of	forms	of	life	that	released	oxygen
into	the	air,	where	it	would	react	with	methane	to	remove	that
component	from	the	network,	and	the	gradual	decline	of	carbon	dioxide
concentrations	over	the	aeons.	It	can	all	be	made	to	work	in	a	plausible
fashion,	but	critics	of	the	approach	pointed	out	that	it	depends	a	lot	on
hindsight,	and	that	it	was	far	from	clear	where	the	links	between	living
species	and	the	physical	environment	operated	–	it	seemed	to	many	as	if
the	constancy	of	the	Earth’s	temperature	might	just	have	been	a	matter
of	luck,	not	a	matter	of	life	manipulating	the	physical	environment
(through	natural	feedbacks,	not	consciously)	for	its	own	benefit.	This	is
where	Daisyworld	comes	in.

Daisyworld	was	initially	developed	by	Lovelock	and	his	colleagues
during	the	early	1980s,	and	has	since	(perhaps	appropriately)	taken	on	a
life	of	its	own,	with	variations	on	the	theme	being	developed	by	several
people,	and	even	being	included	in	the	computer	game	‘SimEarth’	in	the
1990s.	It	was	in	December	1981	that	Lovelock	first	came	up	with	the
idea,	in	response	to	criticisms	of	the	early	versions	of	the	Gaia
hypothesis.	He	presented	it	at	a	conference	in	the	Netherlands	in	1982,
then	enlisted	the	help	of	Andrew	Watson,	one	of	his	former	PhD	students
at	Reading,	to	collaborate	on	a	more	mathematical	version	of	the	model,
which	was	published	in	the	journal	Tellus	in	1983.	Daisyworld	starts	out
as	a	planet	like	the	Earth,	but	lifeless,	orbiting	a	star	like	the	Sun	at	the
same	distance	the	Earth	orbits	the	Sun.	In	the	simplest	versions	of	the
model,	the	surface	of	the	planet	is	chiefly	land,	to	provide	somewhere
for	daisies	to	grow,	and	the	composition	of	the	atmosphere	is	kept
constant,	so	there	is	a	constant	greenhouse	effect.	Daisies	come	in	two



colours,	white	or	black,	and	thrive	when	the	temperature	is	20	°C.	They
do	proportionately	less	well	as	the	temperature	falls	below	this
optimum,	and	cannot	grow	below	5	°C,	and	proportionately	less	well	as
the	temperature	rises	above	the	optimum,	and	cannot	grow	above	40	°C.
The	model	is	set	running	with	the	temperature	of	the	model	Sun	slowly
increasing	in	the	way	that	the	temperature	of	the	real	Sun	did	when	it
was	young.	Once	the	temperature	at	the	equator	of	the	model	Earth
reaches	5	°C	daisy	seeds	of	both	varieties	are	scattered	across	its	surface
and	left	to	their	own	devices	–	with	the	proviso	that	they	breed	true,
with	white	daisies	always	producing	white	offspring	and	black	daisies
always	producing	black	offspring.

As	anyone	who	has	ever	got	into	a	black	car	that	has	been	parked	in
the	sunlight	on	a	summer’s	day	knows,	dark-coloured	objects	absorb
solar	heat	more	effectively	than	light-coloured	objects.	So	a	patch	of
black	daisies	will	absorb	heat	and	warm	the	little	area	of	ground	they
inhabit,	while	a	patch	of	white	daisies	will	reflect	away	heat	and	cool
the	ground	beneath	them.	While	Daisyworld	is	cool,	this	means	that
black	daisies	have	an	advantage,	since	they	warm	their	surroundings
closer	to	the	optimum	temperature	and	thrive.	In	succeeding
generations,	black	daisies	spread	across	the	surface	of	the	planet	at	the
expense	of	white	daisies,	so	that	the	whole	planet	becomes	more
efficient	at	absorbing	heat	from	the	Sun,	and	its	temperature	increases
even	faster	than	it	would	simply	as	a	result	of	the	temperature	of	the	Sun
increasing.	But	once	the	temperature	passes	20	°C	at	any	place	on	the
surface	of	the	model	Earth,	it	is	the	white	daisies	that	are	at	an
advantage,	because	by	cooling	the	surface	they	shift	things	back	towards
the	optimum	temperature.	Even	though	the	temperature	of	the	Sun



continues	to	increase,	because	white	daisies	now	spread	at	the	expense
of	black	daisies,	the	temperature	of	the	planet	hovers	around	20	°C	until
all	the	planet	is	covered	in	white	daisies.	Then,	as	the	temperature	of	the
Sun	keeps	going	up	the	daisies	have	an	increasingly	difficult	time,	until
the	temperature	reaches	40	°C	and	they	all	die	off.	The	entire	range	of
solar	output	covered	by	this	version	of	the	model	is	from	60	per	cent	to
140	per	cent	of	the	present	output	of	our	Sun.

The	overall	effect	is	that	for	a	long	period	of	time,	even	though	the
heat	output	of	the	model	Sun	is	increasing,	the	temperature	of	the	model
Earth	not	only	remains	constant,	but	remains	at	the	optimum
temperature	for	life	–	without	any	conscious	planning	on	the	part	of	the
daisies,	and	with	no	hint	that	one	kind	of	daisy	is	‘sacrificing	itself	for
the	benefit	of	all	living	things.	Both	varieties	only	ever	act	in	their	own
self-interest.	But	can	such	a	very	simple	system	really	be	representative
of	how	nature	actually	works?	One	criticism	of	the	model	was	that	it
might	be	susceptible	to	‘cheating’.	Black	and	white	daisies	have	to	put
some	of	their	energy	into	making	the	pigment	that	affects	the
temperature	of	their	surroundings,	and	you	might	guess	that	colourless
daisies	could	thrive	by	invading	Daisyworld	and	reaping	the	benefits	of
the	‘effort’	put	in	by	the	other	two	varieties.	So	Lovelock	set	up	a	model
in	which	colourless	daisies	were	added	to	the	mix,	and	both	black	and
white	daisies	were	charged	a	‘colour	tax’	of	1	per	cent	to	allow	for
making	the	pigment,	reducing	their	growth	efficiency.	As	before,	black
daisies	flourish	when	solar	output	is	low,	and	white	daisies	flourish
when	solar	output	is	high,	but	now	the	colourless	daisies	do	best	when
the	solar	output	is	just	right	to	make	the	temperature	on	‘Earth’	close	to
optimum	without	any	help,	the	conditions	when	the	cost	of	the



pigmentation	gives	neither	of	the	coloured	daisies	a	selective	advantage.
But	the	overall	effect	on	temperature	is	still	the	same;	the	temperature	of
the	model	Earth	stays	close	to	optimum	while	the	temperature	of	the
model	Sun	increases	dramatically.

Figure	7.2	In	a	Daisyworld	model	with	three	species	of	daisy	(see	pp.	211–12)	and	a	Sun	that	is
steadily	increasing	in	brightness,	the	populations	of	the	different	daisies	change	as	time	passes	(top),	but
the	temperature	at	the	surface	of	the	planet	stays	almost	constant	(bottom)	even	while	the	luminosity	of
the	Sun	increases	dramatically.	The	broken	line	shows	how	the	temperature	would	increase	without	the
influence	of	the	daisies.

Another	criticism	of	the	model,	even	with	this	refinement,	is	that	it
does	not	allow	the	daisies	to	evolve.	So	Lovelock	made	a	variation	on
the	theme,	starting	out	with	grey	daisies,	which	have	no	effect	on
temperature,	but	allowing	them	to	mutate	at	random	to	slightly	darker
or	slightly	lighter	shades	in	each	generation.	Natural	selection	ensured
that,	once	again,	dark	daisies	flourished	when	the	solar	output	was	low,
light	daisies	flourished	when	the	solar	output	was	high,	and	the
temperature	on	Earth	stayed	almost	the	same	for	a	very	long	time.

Daisyworld	can	be	refined	to	take	account	of	many	factors,	including
many	more	varieties	of	daisy,	the	addition	of	animals	that	eat	daisies,
and	even	predators	that	eat	the	grazers.	This	approach	links	the	physical



environment	of	the	planet	to	the	kind	of	predator-prey	relationships

described	long	ago	by	Lotka	and	Volterra	(see	Chapter	4),	which	is
entirely	appropriate	since	Alfred	Lotka,	as	it	happens,	was	one	of	the
first	people	(possibly	thefirst	person)	to	appreciate	that	taking	account	of
the	changing	relationship	between	living	species	and	their	physical
environment	ought	actually	to	make	our	understanding	of	evolution
more	straightforward.	In	1925	he	wrote,	near	the	beginning	of	his	classic
book	Elements	of	Physical	Biology:
It	is	customary	to	discuss	the	‘evolution	of	a	species	of	organisms’.	As	we	proceed	we	shall	see	many	reasons	why	we

should	constantly	take	in	view	the	evolution,	as	a	whole,	of	the	system	(organism	plus	environment).	It	may	appear	at

first	sight	as	if	this	should	prove	a	more	complicated	problem	than	the	consideration	of	a	part	only	of	the	system.	But	it

will	become	apparent,	as	we	proceed,	that	the	physical	laws	governing	evolution	in	all	probability	take	on	a	simpler	form	when

referred	to	the	system	as	a	whole	than	to	any	part	thereof.5

If	that	isn’t	a	cornerstone	of	Gaia	theory	I	don’t	know	what	is	–	and	it
dates	from	more	than	three-quarters	of	a	century	ago.	After	combining
the	Lotka-Volterra	model	with	Daisyworld,	to	give	a	scenario	in	which
daisies	are	eaten	by	rabbits	and	rabbits	are	eaten	by	foxes,	Lovelock	then
tested	the	robustness	of	his	model	world	by	introducing	four
catastrophes	into	the	model	–	plagues	which	each	wiped	out	30	per	cent
of	the	daisy	population.	With	all	of	this	going	on,	as	the	figure	on	page
214	shows,	the	daisies	still	manage	to	maintain	the	temperature	of	the
planet	in	the	life	zone,	with	only	short-lived	blips	caused	by	the	plagues
–	a	form	of	punctuated	equilibrium.

Like	all	models,	Daisyworld	is	only	intended	to	show	what	is
possible,	not	to	say	how	the	world	‘really	is’.	Clearly,	the	temperature	of
the	Earth	is	not	controlled	by	daisies,	but	by	the	changing	infrared-
absorbing	properties	of	the	atmosphere.	But	Daisyworld	shows	how	a
little	feedback	can	allow	(or	require)	life	to	regulate	the	temperature	of	a



planet.	If	the	Earth	got	too	cold	for	life	to	flourish,	carbon	dioxide	would
build	up	in	the	atmosphere	and	increase	the	greenhouse	effect;	as	life
flourishes,	carbon	dioxide	is	drawn	down	out	of	the	atmosphere	and	a
runaway	greenhouse	effect	is	avoided.	What	happens	when	all	the
carbon	dioxide	is	gone	and	the	Sun	keeps	getting	hotter	is	an	open
question	–	perhaps	there	will	be	a	final	catastrophe	for	life	like	the
eventual	thermal	runaway	in	the	simple	Daisyworld	models,	or	perhaps
some	other	mechanism	will	kick	in	to	keep	the	runaway	warming	at	bay,
possibly	by	increasing	cloud	cover	and	reflecting	away	more	of	the
incoming	solar	energy.	That	possibility	is	suggested	by	our	other
example	of	the	way	Gaia	works,	an	example	from	the	real	world,	and
one	which	marked	the	turning	point	when	Gaia	became	a	theory	rather
than	a	mere	hypothesis.	For	that	reason,	although	Daisyworld	is
Lovelock’s	proudest	achievement,	he	regards	the	discovery	of	a
mechanism	linking	cloud	cover	and	biological	activity	in	the	oceans	as
his	most	important	discovery.

Figure	7.3	A	variation	on	the	Daisyworld	theme	in	which	rabbits	eat	the	daisies,	foxes	eat	rabbits,	and
there	are	four	plagues	that	each	kill	30	per	cent	of	the	daisies.	All	the	while,	the	brightness	of	the	Sun
increases;	yet	the	system	proves	rugged	enough	to	keep	the	temperature	at	the	surface	of	the	planet
within	comfortable	limits.



The	difference	between	an	hypothesis	and	a	theory	is	that	while	an
hypothesis	is	an	idea	about	how	things	might	work,	it	has	not	been
tested	by	experiment	and	observation.	If	an	hypothesis	makes	a
prediction	(or	better,	a	series	of	predictions)	about	the	way	a	new
experiment	will	turn	out,	or	what	new	observations	will	uncover,	and	if
that	prediction	is	borne	out	by	events,	then	the	hypothesis	becomes	a
theory.	Newton’s	theory	of	gravity,	for	example,	makes	predictions	about
the	orbits	of	comets,	and	Edmond	Halley	used	the	theory	to	predict	the
return	of	the	comet	that	now	bears	his	name.	It	is	thanks	to	the	success
of	such	predictions	that	we	talk	about	Newton’s	theory	of	gravity,	rather
than	his	hypothesis.	The	distinction	is	often	blurred;	but	what	happened
with	Gaia	in	the	second	half	of	the	1980s	is	a	clear	example	of	an
hypothesis	coming	of	age	and	becoming	a	theory.

Very	early	on	in	the	development	of	his	ideas	about	Gaia	(indeed,
before	William	Golding	even	gave	it	that	name),	in	the	early	1970s
Lovelock	was	interested	in	the	way	sulphur	is	transmitted	from	the
oceans	to	the	land.	Sulphur	is	an	essential	ingredient	of	life,	but	is
constantly	being	lost	from	the	continents	in	the	run-off	from	rivers,	in
the	form	of	sulphate	compounds.	Without	some	mechanism	to	return
sulphur	to	the	land,	life	on	land	would	soon	be	in	difficulties.	At	the
time,	the	conventional	wisdom	was	that	sulphur	was	emitted	into	the	air
from	the	oceans	in	the	form	of	hydrogen	sulphide,	the	noxious	gas
responsible	for	the	‘bad	eggs’	smell	of	schoolboy	stink-bombs.	This	is	not
typically	the	smell	you	associate	with	the	sea,	and	in	any	case,	as
Lovelock	was	well	aware,	hydrogen	sulphide	is	easily	broken	down	by
reactions	involving	oxygen	dissolved	in	sea-water.	But	he	also	knew	that
two	decades	earlier	researchers	at	the	University	of	Leeds	had	found	that



many	marine	organisms	release	sulphur	in	the	form	of	a	compound
known	as	dimethyl	sulphide;	and	as	a	chemist	of	the	old	school	he	also
knew	that	dimethyl	sulphide,	in	weak	concentrations	in	the	air,	has	a
fresh	smell,	like	that	of	‘fresh	fish	straight	from	the	sea,	but	not	part	of
the	smell	of	fresh	fresh-water	fish’.	Curious	to	find	out	if	dimethyl
sulphide	(DMS	for	short)	really	could	be	the	main	carrier	of	sulphur
from	the	oceans	to	the	land,	Lovelock	designed	and	built	a	sensitive
instrument	to	measure	traces	of	DMS	in	the	air,	and	arranged	for	it	to	be
carried	on	the	research	vessel	Shackleton	on	one	of	its	routine	voyages
from	Britain	to	Antarctica	and	back.	This	voyage,	completed	in	1972,	is
now	part	of	scientific	history,	because	another	of	Lovelock’s	instruments
carried	on	the	trip	revealed	for	the	first	time	the	way	in	which
chlorofluorocarbons,	gases	produced	by	human	activities	and	now
known	to	be	responsible	for	destroying	ozone	in	the	stratosphere,	had
spread	through	the	atmosphere	of	our	planet.	But	that	is	another	story.
Lovelock	found	the	DMS,	just	as	he	had	anticipated,	but	it	was	not	for
another	ten	years,	until	the	early	1980s,	that	further	observations	and
measurements	showed	that	there	is	indeed	enough	DMS	being	produced
in	the	oceans	and	getting	into	the	atmosphere	each	year	to	fall	in	rain
over	land	and	replace	the	losses	from	sulphate	run-off.

But	the	microscopic	marine	organisms	that	make	the	DMS	do	not	do
so	because	they	‘want’	to	help	life-forms	that	live	on	land.	Like	all	living
things,	they	are	only	interested	in	maximizing	their	own	chances	of
survival.	The	kind	of	organisms	that	release	DMS,	marine	algae,	have	to
fight	a	constant	battle	to	prevent	sodium	chloride	(common	salt)	in	sea-
water	from	penetrating	the	membranes	of	their	cells	and	disrupting	the
chemistry	of	life	within.	One	way	to	keep	the	salt	out	is	to	build	up	a



suitable	pressure	inside	the	cell,	using	a	non-toxic	compound	that	has	no
adverse	effect	on	the	life	processes	involving	DNA,	RNA	and	amino
acids.	Many	marine	algae	use	a	compound	called	dimethylsulphonio
propionate,	built	around	sulphur,	for	this	purpose.	It	has	all	the	required
chemical	properties,	and	it	is	convenient	for	them	to	use	sulphur	as	the
key	ingredient	because	(thanks	to	all	that	sulphate	washed	down	off	the
land)	there	is	plenty	of	sulphur	in	the	sea.	When	the	algae	die	or	are
eaten,	the	dimethylsulphonio	propionate	gets	broken	down,	releasing
DMS	into	the	air.	What,	though,	has	all	this	got	to	do	with	the	Gaian
self-regulation	of	climate	on	Earth?

In	1986,	on	a	visit	to	the	University	of	Washington,	Seattle,	Lovelock
was	surprised	to	learn,	from	the	atmospheric	scientist	Robert	Charlson,
that	nobody	knew	how	clouds	formed	over	the	oceans.	It	is	easy	enough
to	make	rain.	When	warm,	wet	air	rises	by	convection	and	cools,	at	a
suitable	altitude	the	moisture	will	condense	out	as	large	drops	of	water,
which	fall	straight	back	down.	But	in	order	to	make	clouds	you	need	to
encourage	the	water	molecules	in	the	atmosphere	to	form	tiny	droplets,
which	float	in	the	air.	They	can	only	do	this	if	there	are	even	tinier
‘seeds’	(sometimes	called	cloud	condensation	nuclei,	or	CCN)	around
which	the	water	molecules	can	collect.	Over	land,	there	are	always
plenty	of	these	seeds,	some	produced	by	windblown	dust,	others	by
organic	activity,	and	even	some	from	the	pollution	of	the	atmosphere
caused	by	human	activities.	Charlson	told	Lovelock	that	samples	of	air
from	above	the	Pacific	Ocean	showed	an	abundance	of	suitable	seeds,	in
the	form	of	droplets	of	sulphuric	acid	and	ammonium	sulphate.	But	he
and	his	colleagues	had	no	idea	where	the	sulphuric	acid	and	the
ammonium	sulphate	came	from,	until	he	heard	Lovelock	describing	the
sulphur-recycling	process	involving	DMS.	DMS	could	be	oxidized	in	the



sulphur-recycling	process	involving	DMS.	DMS	could	be	oxidized	in	the
air	to	make	the	cloud	condensation	nuclei.

The	importance	of	this	contribution	to	the	global	network	is	clear.
Clouds	reflect	away	so	much	of	the	incoming	solar	energy	that	without
any	cloud	cover	the	average	surface	temperature	on	Earth	would	be	35
°C,	a	full	20	°C	higher	than	it	actually	is.	Since	oceans	cover	about	70	per
cent	of	the	surface	of	our	planet,	and	the	dark	ocean	waters	are
particularly	good	at	absorbing	heat	from	the	Sun,	without	clouds	over
the	oceans	the	world	would	be	uncomfortably	warm	(an	average	of	35
°C,	worldwide,	would	encompass	much	higher	temperatures	in	the
tropics).	The	implication	of	all	this	is	that	microscopic	life-forms	in	the
oceans	play	a	key	role	in	controlling	the	climate	of	the	Earth.	In	a
natural	feedback	process,	if	the	algae	became	more	active,	cloud	cover
over	the	oceans	would	increase,	there	would	be	less	sunlight	available
for	photosynthesis,	and	biological	activity	would	decline;	but	if
biological	activity	declines,	less	DMS	is	released	by	the	algae,	fewer
clouds	form,	so	there	is	more	sunlight	available	for	photosynthesis	and
life	thrives.	It	is	just	like	the	kind	of	self-organizing	feedback	we	see	at
work	in	Daisyworld,	and	the	tendrils	of	the	network	extend	into	many
aspects	of	life	on	Earth.

We	can	give	you	some	idea	of	the	complexity	of	those	links,	and	you
can	find	a	lot	more	detail	in	the	various	books	about	Gaia	written	by	Jim
Lovelock.	A	key	point	is	that	the	open	ocean,	far	from	land,	is	essentially
a	desert,	sparsely	populated	by	life	compared	with	the	rich	waters	of	the
continental	shelf.	The	reason	is	that	far	away	from	land	there	is	a
shortage	of	nutrients	on	which	life	can	feed.	Close	to	the	continents,	by
contrast,	there	is	always	plenty	of	stuff	for	life	to	feed	on,	being	carried



down	to	the	sea	by	rivers.	By	acting	as	cloud	condensation	nuclei,	DMS
produced	by	marine	algae	can	help	the	oceanic	deserts	to	bloom	(at	least
a	little)	in	two	ways.	First,	extra	cloud	cover	has	a	direct	effect	on	the
local	weather,	making	the	winds	more	vigorous.	This	acts	to	stir	up	the
surface	layers	of	the	sea,	bringing	up	nutrients	from	deeper	layers,	below
the	zone	in	which	photosynthesis	occurs.	Secondly	(and	probably	more
importantly),	the	clouds	and	rain	affect	windblown	dust	from	the
continents,	which	is	carried	high	in	the	atmosphere	over	even	the	most
remote	oceans	of	the	world.	Dust	from	the	Sahara,	for	example,	has	been
found	over	the	West	Indies,	and	dust	from	the	heartland	of	the	Asian
continent	routinely	gets	carried	across	the	Pacific	to	Hawaii.	This	dust	is
rich	in	nutrient	minerals	that	are	essential	for	life,	but	the	dust	particles
do	not	have	the	right	physical	properties	to	act	as	cloud	condensation
nuclei.	Without	clouds,	they	would	simply	stay	in	the	high	atmosphere,
because	they	would	not	be	affected	by	the	kind	of	cloudless	rain
produced	by	evaporation	alone.	But	in	the	clouds	produced	as	a	result	of
the	presence	of	DMS	in	the	atmosphere,	the	rainfall	washes	the	dust	out
of	the	air	and	into	the	oceans,	where	it	can	be	used	by	the	very	algae
that	make	the	DMS.	So	the	link	between	oceans	and	land	resulting	from
the	production	of	DMS	by	marine	algae	operates	as	a	two-way	street,	to
the	benefit	of	life	in	both	places.	Much	of	the	sulphur	in	the	D	M	S	gets
rained	out	over	land,	where	it	acts	as	a	fertilizer	for	land-based	life;	but
some	is	responsible	for	the	clouds	and	rain	which	deposit	nutrients	from
the	land	on	to	the	oceans	and	act	as	fertilizer	for	ocean-based	life.	But
nowhere	is	there	any	suggestion	that	life	in	one	place	is	acting	in	a	self-
sacrificing	manner	for	the	benefit	of	life	in	the	other	place.	Each	does
what	is	best	for	itself.	This	is	just	the	kind	of	interaction	that	we	have



seen	to	be	important	in	self-organizing	networks.

But	even	this	only	explains	an	existing	situation.	The	great	thing
about	the	DMS	work	is	that	it	also	makes	a	prediction	about	what	the
world	would	be	like	when	a	change	is	made	to	the	overall	situation,	and
that	prediction	matches	our	understanding	of	what	the	world	was	like
during	the	latest	series	of	Ice	Ages.

Over	the	past	few	million	years,	Ice	Ages	have	followed	a	fairly
regular	rhythm,	in	which	Ice	Ages	roughly	100,000	years	long	are
separated	by	intervals	of	relative	warmth,	called	Interglacials,	which	last
for	about	10,000	to	15,000	years.	We	live	in	an	Interglacial	that	began
about	10,000	years	ago.	The	detailed	pattern	of	these	Ice	Age	changes
exactly	matches	the	detailed	pattern	of	the	way	in	which	changes	in	the
balance	of	the	heat	between	the	seasons	occur	as	a	result	of	the	way	the
Earth	tilts	and	wobbles	as	it	orbits	the	Sun.	The	total	amount	of	heat
received	from	the	Sun	each	year	is	constant,	but	sometimes	there	is	a
stronger	contrast	between	the	seasons	(hot	summers	and	cold	winters),
and	sometimes	there	is	less	contrast	(cool	summers	and	mild	winters).
The	pattern	seems	to	be	that	Interglacials	only	begin	when	summers	in
the	Northern	Hemisphere	(where	most	of	the	land	is	today)	are	at	their

hottest.6	But	these	changes	are	not	in	themselves	large	enough	to	explain
the	change	from	Ice	Age	to	Interglacial	and	back	again.	There	must	be
some	other	process	which	is	triggered	by	the	astronomical	rhythms,	and
which	then	acts	as	a	positive	feedback	to	enhance	the	astronomical
influence.	The	obvious	candidate	is	the	amount	of	carbon	dioxide	in	the
air.

We	know	that	when	there	is	less	carbon	dioxide	in	the	air	the



greenhouse	effect	is	reduced	and	the	Earth	cools	–	that	lies	at	the	very
heart	of	Gaia	theory.	And	we	also	know	that	during	the	most	recent	Ice
Age,	not	only	was	the	overall	concentration	of	carbon	dioxide	in	the	air
lower	than	it	is	today,	but	that	the	concentration	fluctuated	over	the
millennia	exactly	in	line	with	variations	in	the	average	temperature	of
the	globe.	We	know	because	there	are	exact	records	of	both	the
temperature	variations	and	the	carbon	dioxide	fluctuations	available,
from	long	ice	cores	drilled	through	the	ice	sheets	of	Greenland	and
Antarctica.	There	are	now	several	of	these,	but	the	archetypal	example
comes	from	the	Russian	Antarctic	base	Vostok,	where	researchers	have
obtained	a	continuous	core	of	ice	covering	more	than	160,000	years,
enough	to	reveal	details	of	the	entire	latest	Ice	Age.	Drilling	began	in
1980,	and	produced	a	core	2.2	kilometres	long,	containing	ice	laid
down,	year	by	year,	in	layers	of	snow	that	were	then	turned	into	ice	by
the	weight	of	new	snow	falling	on	top	of	them.	The	ice	at	the	bottom	of
the	core	was	produced	from	snow	which	fell	more	than	160,000	years
ago,	and	has	been	compressed	so	much	that	at	that	level	a	year’s
accumulation	of	snow	has	been	squeezed	into	a	layer	of	ice	one
centimetre	thick.

Successive	layers	of	ice	in	the	core	can	be	dated	by	standard
geological	techniques.	As	well	as	the	ice	itself,	the	core	contains	bubbles
of	air	trapped	when	the	snowflakes	were	compressed	into	ice,	and	the
contents	of	those	air	bubbles	can	be	analysed	to	reveal	how	the
composition	of	the	atmosphere	has	changed	over	the	latest	Ice	Age—
Interglacial	cycle.	At	the	same	time,	the	water	from	the	ice	itself	can	be
analysed	to	tell	us	how	the	temperature	has	changed	over	the	same
interval.	There	are	several	ways	to	do	this,	all	using	variations	on	the



same	technique.	For	example,	water	molecules	contain	hydrogen,	and
hydrogen	comes	in	two	varieties	(two	isotopes),	the	common	form	and
so-called	heavy	hydrogen,	or	deuterium.	Heavy	hydrogen	is	literally
heavier	than	common	hydrogen,	but	the	two	forms	are	the	same
chemically.	So	water	molecules	come	in	two	forms,	some	heavier	than
the	common	variety.	The	heavier	molecules	of	water	evaporate	less
readily	than	common	water,	but	freeze	out	of	water	vapour	in	the	air
more	easily;	the	exact	proportion	of	each	variety	falling	in	snow	depends
on	the	average	temperature	in	that	part	of	the	world	at	the	time,	and	so
the	temperature	long	ago	can	be	inferred	from	measurements	of	the
proportion	of	heavy	water	present	in	the	ice	from	deep	down	the	core.
Similar	techniques	involving	different	isotopes	of	oxygen,	obtained	both
from	ice	cores	and	the	shells	of	long-dead	organisms	buried	in	deep
ocean	sediments,	give	a	broader	picture	of	how	global	temperatures
were	changing	over	the	same	period.	The	records	show	that	during	the
coldest	period	both	of	the	latest	Ice	Age	and	the	Ice	Age	before	that
temperatures	worldwide	averaged	9	°C	lower	than	today,	while	during
the	warmest	years	of	the	Interglacial	separating	those	two	Ice	Ages,
temperatures	were	2	°C	higher	than	they	are	today.	At	the	end	of	each	of
the	latest	two	Ice	Ages,	the	concentration	of	carbon	dioxide	in	the
atmosphere	rose	from	190	parts	per	million	to	280	parts	per	million,	an
increase	of	47	per	cent,	with	a	comparable	decrease	at	the	beginning	of
the	latest	Ice	Age.	And,	as	the	figure	above	shows,	carbon	dioxide
fluctuations	and	temperature	fluctuations	marched	in	step	right	through
the	interval	covered	by	the	Vostok	core.	The	question	is,	what	triggered
the	change	in	carbon	dioxide	concentration	which	contributed	so	much
to	the	Ice	Age?



Figure	7.4	As	the	Earth	shifts	into	or	out	of	an	interglacial,	temperature	variations	and	changes	in	the
concentration	of	carbon	dioxide	in	the	air	move	in	step.	(Data	from	the	Vostok	core.)

The	obvious	possibility	is	that	an	increase	in	the	biological	activity	of
the	oceans,	which	cover	two-thirds	of	the	surface	of	the	globe,	would
draw	carbon	dioxide	out	of	the	air	and	lock	it	up	in	the	form	of	carbon
compounds	in	the	shells	of	those	photosynthesizing	organisms	(forms	of
plankton)	which	fall	to	the	floor	of	the	ocean	when	those	organisms	die.
In	the	1980s,	John	Martin	and	Steve	Fitzwater,	of	the	Moss	Landing
Marine	Laboratories	in	California,	followed	up	a	hunch	by	Martin	that
iron	might	play	a	key	role	in	fertilizing	the	oceans.	The	waters	of	the
Antarctic	Ocean	and	the	sub-Arctic	Pacific	Ocean	are,	they	knew,	rich	in
important	plant	nutrients	such	as	phosphates	and	nitrates.	These
nutrients	are	essential	for	plant	growth,	and	are	usually	swiftly	taken	up
by	plants;	but	the	plankton	that	live	in	those	areas	were	just	not
spreading	and	taking	them	up.	Clearly,	the	plankton	were	lacking
something	else,	which	prevented	them	from	growing	and	taking
advantage	of	those	nutrients.	Iron	seemed	a	good	bet,	because	iron	is	a
crucial	component	of	chlorophyll,	the	green	pigment	responsible	for
absorbing	the	light	used	in	photosynthesis.	Sure	enough,	when	Martin



and	Fitzwater	took	samples	of	water	from	the	Northeast	Pacific	and

added	iron	(in	the	form	of	dissolved	iron	compounds),	there	was	a	rapid
growth	of	plankton,	which	took	up	the	iron	and	the	other	nutrients
available	in	the	water.	The	studies	showed	that	what	is	stopping	the
plankton	from	increasing	in	the	cold,	nutrient-rich	waters	at	high
latitudes	is	indeed	a	shortage	of	iron.	Since	then,	these	laboratory-scale
experiments	have	been	followed	up	by	large-scale	trials	at	sea,	where
iron	compounds	have	been	added	to	the	oceans	themselves,	producing
sometimes	dramatic	blooms	of	plankton.	There	are	even	suggestions	that
such	plankton	blooms	might	be	encouraged	on	a	large	scale,	to	take
carbon	dioxide	out	of	the	air	and	reduce	the	impact	of	the	anthropogenic
greenhouse	effect,7	but	that	has	nothing	to	do	with	our	present	story.

The	relevant	point	is	that	windblown	dust	from	the	continents	could
provide	a	vital	source	of	iron	to	fertilize	the	oceans	in	these	areas,	and
that,	because	there	is	less	rainfall	when	the	Earth	cools,	the	amount	of
such	iron-bearing	dust	is	likely	to	increase	when	some	external	influence
(such	as	the	astronomical	rhythms)	tilts	the	heat	balance	of	the	Earth	in
favour	of	an	Ice	Age.

The	scenario	is	that	the	onset	of	cooling,	triggered	by	the
astronomical	influences	(or	even	by	some	other	effect),	leads	to	drier
conditions	over	land	at	high	altitudes,	because	when	the	world	cools
there	is	less	evaporation	from	the	oceans	and	therefore	less	rainfall.	Dry
conditions	allow	windblown	dust	from	the	continents,	carrying	iron
compounds,	to	spread	over	the	oceans	in	high	latitudes,	where	(thanks
to	the	DMS	from	marine	algae),	it	is	rained	out,	and	fertilizes	the	seas.
The	increase	in	biological	activity	that	results	draws	carbon	dioxide
down	out	of	the	air,	reducing	the	greenhouse	effect	and	encouraging



more	cooling,	thereby	allowing	more	dust	to	be	blown	off	the	land	and
to	fertilize	the	oceans.	The	process	stops	when	all	the	free	phosphate	and
nitrate	has	been	used	up.	At	the	same	time,	with	more	DMS	being
produced,	there	will	be	more	clouds	over	the	oceans,	which	will	reflect
away	more	of	the	incoming	solar	energy,	and	so	encourage	the	cooling.
On	this	picture	it	is	easy	to	see	how	the	world	can	go	from	an
Interglacial	into	a	full	Ice	Age	as	a	result	of	a	fairly	small	external
trigger.	Getting	out	of	the	Ice	Age	might	then	occur	when	the
astronomical	influences	conspire	to	produce	maximum	heating	at	high
northern	latitudes,	melting	back	some	of	the	ice	and	damping	down	the
dry	land	around	the	fringes	of	the	ice	cap.	With	less	windblown	dust	as	a
result,	there	will	be	less	iron	for	the	plankton,	and	the	feedback	will	go
into	reverse,	with	life	in	the	oceans	going	into	decline	as	the	ice	caps
retreat	more	and	more,	and	life	on	land	flourishes	as	the	continents
become	wetter.

This	is	only	a	simple	cartoon	version	of	what	goes	on,	but	it	is
enough	to	highlight	the	prediction	made	by	the	DMS	model.	If	Ice	Ages
are	associated	with	an	increase	in	the	biological	activity	of	the	oceans	in
this	way,	there	must	be	a	lot	more	DMS	getting	into	the	air	during	an	Ice
Age.	One	of	the	products	of	DMS	in	the	air	is	methanesulphonic	acid,	or
MSA.	So	a	prediction	of	the	Gaian	model	developed	by	Lovelock	and	his
colleagues	is	that	there	should	be	more	MSA	in	the	atmosphere,	and
therefore	more	MSA	falling	in	rain	or	snow,	during	an	Ice	Age.	The	ice
cores	show	that	there	was,	in	fact,	between	two	and	five	times	as	much
MSA	falling	in	snow	over	Antarctica	each	year	during	the	latest	Ice	Age
as	there	is	today.	The	same	ice	cores	also	show	that	there	was	more	dust
falling	with	the	snow	then	than	there	is	today.	Everything	fits.	This	is



compelling	evidence	that	the	biological	and	physical	components	of	our
planet	are	part	of	a	single	network	which	operates	in	a	self-organized
way	(Lovelock	uses	the	expression	self-regulating)	to	maintain
conditions	that	are	broadly	suitable	for	the	existence	of	life,	but	which
undergoes	fluctuations	on	all	scales	(including	Ice	Age-Interglacial
rhythms,	and	mass	extinctions)	analogous	to	the	fluctuations	that	occur
in	the	sandpile	model.	In	a	real	sense,	the	Earth	is	home	to	a	single
living	network,	and	the	existence	of	that	network	(Gaia)	would	be	easily
apparent	to	any	intelligent	life	on	Mars	capable	of	applying	the	Lovelock
test	and	looking	for	signs	of	entropy	reduction.

Neither	NASA	nor	anyone	else	ever	took	the	Lovelock	test	seriously
enough	to	apply	it	to	the	search	for	life	in	the	Solar	System;	but	the	idea
is	now	being	taken	seriously	enough	to	form	the	basis	of	the	search	for
life	beyond	the	Solar	System.	This	search	has	been	given	impetus	by	the
realization	that	if	there	is	life	beyond,	it	is	very	likely	to	be	life	more	or
less	as	we	know	it,	made	from	the	same	fundamental	(and	simple)
building	blocks	working	together	in	the	same	kind	of	networks	that	we
see	here	on	Earth.

The	story	of	life	in	the	Universe	is	another	example	of	surface
complexity	built	upon	foundations	of	deep	simplicity.	There	is	now
compelling	evidence	that	the	Universe	as	we	know	it	emerged	from	a	hot

dense	state	(the	Big	Bang)	some	14	billion	years	ago.8	The	basic	building
blocks	that	emerged	from	the	Big	Bang	were	hydrogen	and	helium,
almost	exactly	in	the	proportions	3:1.	All	of	the	other	chemical	elements
(except	for	tiny	traces	of	a	few	very	light	elements,	such	as	lithium)	have
been	manufactured	inside	stars	and	scattered	through	space	when	those
stars	swell	up	and	eject	material	(in	some	cases	they	explode)	in	the	later



stages	of	their	lives.	A	star	like	the	Sun	generates	heat	by	converting
hydrogen	into	helium	in	its	heart;	in	other	stars	the	key	processes
involve	successive	fusions	of	helium	nuclei	together.	Since	each	helium
nucleus	is	a	unit	containing	four	‘nucleons’	(two	protons	and	two
neutrons),	denoted	by	the	shorthand	helium-4,	this	means	that	elements
whose	nuclei	are	made	up	of	multiples	of	four	nudeons	are	relatively
common	in	the	Universe,	with	the	exception	of	unstable	beryllium-8.	In
particular,	carbon-12	and	oxygen-16	are	produced	in	early	stages	of	this
process,	and	it	happens	that	nitrogen-14,	although	not	containing	a
whole	number	of	helium-4	nuclei,	is	produced	as	a	by-product	of	a	series
of	interactions	involving	oxygen	and	carbon	nuclei	which	operate	in
stars	a	little	more	massive	than	our	Sun.	As	a	result,	these	are	by	far	the
most	common	elements	apart	from	hydrogen	and	helium.	Since	helium
is	an	inert	gas	which	does	not	react	chemically,	this	means	that	the	four
most	common	reactive	elements	in	the	Universe	are	carbon,	hydrogen,

oxygen	and	nitrogen,	collectively	known	by	the	acronym	CHON.9	It	is	no
coincidence	that	the	four	chemical	elements	which	overwhelmingly
contribute	to	the	composition	of	living	things	on	Earth	are	carbon,
hydrogen,	oxygen	and	nitrogen.	Carbon	plays	the	key	role	in	life,
because	a	single	carbon	atom	is	able	to	combine	chemically	with	as
many	as	four	other	atoms	at	once	(including	other	carbon	atoms,	which
may	themselves	be	linked	to	yet	more	carbon	atoms	in	rings	and	chains),
so	that	it	has	an	unusually	rich	chemistry.	In	the	science-fiction	world	of
space	operas	such	as	Star	Trek,	it	is	common	for	our	kind	of	life	to	be
referred	to	as	‘carbon-based	life-forms’,	with	the	implication	that	there
might	be	other	forms	of	life.	There	mightbe;	but	all	the	evidence	from
astronomy	suggests	that	it	is	overwhelmingly	more	likely	that	life



beyond	is	also	based	on	CHON.

Much	of	that	evidence	comes	from	spectroscopic	analysis	of	the
material	present	in	clouds	of	gas	and	dust	in	space	–	the	kind	of	clouds
from	which	planetary	systems	like	our	Solar	System	form,	but	which	are
themselves	laced	with	ejected	material	from	previous	generations	of
stars.	These	clouds	contain	many	compounds	built	around	carbon	atoms,
and	carbon	is	so	important	for	life	as	we	know	it	that	carbon	compounds
are	generally	referred	to	as	‘organic’	compounds.	The	compounds
detected	in	interstellar	clouds	include	fairly	simple	substances	such	as
methane	and	carbon	dioxide,	but	also	much	more	complex	organic
material	including	formaldehyde,	ethyl	alcohol,	and	even	at	least	one
ammo	acid,	glycine.	This	is	an	eye-opening	discovery,	because	any
material	that	exists	in	interstellar	clouds	is	likely	to	have	been	present	in
the	cloud	from	which	our	Solar	System	formed,	about	five	billion	years
ago.	Inspired	by	these	observations,	two	teams	of	scientists	carried	out
experiments	here	on	Earth	in	which	the	kind	of	raw	materials	known	to
exist	in	interstellar	space,	in	the	form	of	mixtures	of	various	ices,	were
kept	in	sealed	containers	under	the	kind	of	conditions	that	exist	in	space,
exposed	to	ultraviolet	radiation	at	temperatures	below	15	Kelvin	(less
than	minus	258	degrees	on	the	Celsius	scale).	Their	results	were
announced	in	the	spring	of	2002.	Starting	with	a	mixture	of	water,
methanol,	ammonia	and	hydrogen	cyanide,	one	team	found	that	three
amino	acids	(glycine,	serine	and	alanine)	arose	spontaneously	in	the
containers.	In	the	other	experiment,	using	a	slightly	different	mixture	of
ingredients,	no	less	than	sixteen	amino	acids	and	several	other	organic
compounds	were	produced	under	the	conditions	that	exist	between	the

stars.10	To	put	that	in	perspective,	the	proteins	of	all	living	things	on



Earth	are	composed	of	various	combinations	of	just	twenty	amino	acids.
All	the	evidence	suggests	that	this	kind	of	material	would	have	rained
down	upon	the	young	planets	in	the	early	stages	of	the	formation	of	the
planetary	system,	deposited	by	comets	swept	up	by	the	gravitational
influence	of	the	growing	planets.	As	we	saw	earlier,	a	broth	of	amino
acids	has	the	capacity	to	organize	itself	into	a	network	with	all	the
properties	of	life.	The	implication	is	that	amino	acids	formed	over	very
long	periods	of	time	in	the	depths	of	space	(using	energy	from	starlight)
will	be	brought	down	to	the	surface	of	any	young	planet	like	the	Earth.
Some	may	be	too	hot	for	life,	others	too	cold.	But	some,	like	the	Earth
itself	(and	like	Baby	Bear’s	porridge	in	the	Goldilocks	story)	will	be	just
right.	There,	in	some	‘warm	little	pond’,	to	borrow	Charles	Darwin’s
expression,	they	get	the	opportunity	to	organize	themselves	into	living
systems.

Figure	7.5	The	cycle	of	nuclear	interactions,	going	on	inside	stars	slightly	more	massive	than	our	Sun,
which	links	carbon,	nitrogen	and	oxygen—	together	with	hydrogen,	the	most	important	elements	of	life.

Until	we	knew	that	there	were	other	planetary	systems	in	our	Milky
Way	Galaxy,	even	this	possibility	could	not	be	taken	as	evidence	that
planetary	life	is	common	in	the	Milky	Way.	But	now,	more	than	a
hundred	stars	in	our	part	of	the	Galaxy	are	known	to	have	planets	in
orbit	around	them.	Almost	all	the	planets	discovered	so	far	are	gas	giants



orbit	around	them.	Almost	all	the	planets	discovered	so	far	are	gas	giants
like	Jupiter	and	Saturn	(as	you	would	expect,	large	planets	have	been
found	first,	because	they	are	easier	to	detect	than	small	planets),	but	it
seems	difficult	to	avoid	the	conclusion	that	if	other	Jupiters	exist	then
other	Earths	probably	exist	as	well.

The	relationship	between	stars,	which	convert	simpler	elements	into
things	like	CHON	and	spew	those	materials	out	into	space,	and	the
clouds	of	gas	and	dust	in	space,	which	collapse	to	form	new	stars,	has
been	investigated	by	Lee	Smolin	of	the	University	of	Waterloo,	Ontario.
Our	home	in	space,	the	Milky	Way	Galaxy,	is	one	of	several	hundred
billion	similar	‘islands’	scattered	across	the	visible	Universe,	and	it	seems
to	be	completely	typical	–	average	in	size,	chemical	composition,	and	so
on.	The	Milky	Way	forms	a	flat	disc,	about	a	hundred	thousand	light
years	across,	made	up	of	a	few	hundred	billion	stars	which	orbit	around
the	centre	of	the	disc.	The	Sun	(an	entirely	undistinguished	member	of
this	crowd	of	hundreds	of	billions	of	stars)	orbits	about	two-thirds	of	the
way	out	from	the	centre.	At	the	centre	of	the	Milky	Way	there	is	a	bulge
of	stars,	so	that	from	the	outside	it	would	look	rather	like	a	huge	fried
egg,	with	the	bulge	representing	the	yolk.	But	the	way	in	which	the	disc
rotates	reveals	that	all	of	the	bright	material	that	makes	up	the	visible
Milky	Way	Galaxy	is	held	in	the	gravitational	grip	of	about	ten	times	as
much	dark	matter,	spread	out	in	a	halo	around	the	Milky	Way	and
extending	far	beyond	the	edge	of	the	disc	of	bright	stars.	Finding	out	just
what	this	dark	matter	is	is	of	key	interest	to	astronomers,	but	plays	no
further	part	in	our	story.

Many	disc	galaxies	are	marked	by	streamers	of	bright	stars	which
spiral	outwards	from	the	centre,	giving	them	the	alternative	name	spiral



galaxies.	It	is	easy	to	study	the	patterns	made	by	these	spiral	arms,	as

they	are	called,	because	galaxies	are	relatively	close	to	one	another,
compared	to	their	size.	The	nearest	comparable	spiral	galaxy	to	the
Milky	Way,	the	Andromeda	galaxy,	is	a	couple	of	million	light	years
away	from	us;	it	sounds	a	great	distance,	but	the	Andromeda	galaxy	is	so
big	(a	little	bigger	than	the	Milky	Way	Galaxy)	that	even	at	that	distance
it	covers	a	patch	of	sky	as	big	as	the	Moon,	as	seen	from	Earth,	and	can
just	be	seen	with	the	naked	eye	on	a	clear,	moonless	night	far	away	from
cities	and	other	sources	of	light	pollution.11	From	mapping	the	positions

of	the	stars	in	the	Milky	Way,	astronomers	know	that	our	own	Galaxy	is
also	a	spiral	–	and	they	know,	as	we	have	hinted,	that	there	is	a	lot	of
gas	and	dust	in	clouds	between	the	stars,	so	that	a	proper	understanding
of	what	a	spiral	galaxy	is	and	how	it	works	requires	an	understanding	of
the	way	energy	and	matter	are	exchanged,	in	a	two-way	process,
between	the	stars	and	this	interstellar	medium.	We	also	need	to
appreciate	the	timescales	that	are	important	to	a	galaxy.	Our	Milky	Way
is	already	about	ten	billion	years	old,	and	the	Sun	takes	about	250
million	years	to	orbit	the	centre	once.	The	processes	which	exchange
matter	and	energy	between	interstellar	clouds	and	stars	may	seem	slow
by	human	standards,	yet	still	be	rapid	by	the	standards	of	the	Galaxy
itself.

Another	key	point	is	that	stars	themselves	come	in	different	sizes	–
more	importantly,	different	masses.	The	bigger	(more	massive)	a	star	is,
the	more	vigorously	it	has	to	use	up	its	supply	of	nuclear	fuel
(converting	hydrogen	into	helium,	and	so	on)	in	order	to	hold	itself	up
against	its	own	weight.	This	makes	it	very	bright,	but	subject	to	an	early
burnout.	Although	the	Sun	has	a	lifetime	of	about	ten	billion	years	in



this	stable	phase	of	its	life,	a	star	with	twice	as	much	mass	can	only	hold
itself	up	for	a	quarter	as	long,	and	a	star	with	thirty	times	as	much	mass
as	the	Sun	will	live	for	only	about	ten	million	years,	shining	as	brightly
as	30,000	suns,	before	its	nuclear	fuel	is	exhausted.	Then	it	will	collapse
inward,	releasing	a	huge	amount	of	gravitational	energy,	which	turns	it
inside	out	and	blasts	the	entire	star	apart,	as	a	supernova.	But	such
dramatic	events	are	rare,	because	such	massive	stars	are	rare;	the
processes	by	which	stars	form	seem	to	favour	the	production	of	large
numbers	of	smallish	stars	more	or	less	like	the	Sun.	Indeed,	on	average
there	are	just	a	couple	of	supernova	explosions	per	century	in	a	galaxy
like	the	Milky	Way	–	but	to	put	that	in	a	suitable	context	for	galactic
processes,	that	still	adds	up	to	20,000	or	so	every	million	years.

The	spiral	arms	which	are	such	a	prominent	feature	of	galaxies	like
our	own	are	visible	because	they	are	lined	with	hot,	massive	stars	which
shine	brightly.	This	means	that	they	are	also	young	stars,	since	there	are
no	old	massive	stars.	Since	it	typically	takes	a	star	a	hundred	million
years	or	so	to	orbit	around	the	Galaxy	once,	and	the	bright	stars	that
edge	spiral	arms	shine	brightly	for	only	a	few	million,	maybe	ten
million,	years,	it	follows	that	these	stars	formed	more	or	less	where	we
see	them	now.	The	bright	spiral	arms	do	not	indicate	regions	where	stars
are	particularly	common,	but	only	regions	where	stars	are	particularly
bright	–	Smolin	says	they	stand	out	‘like	lights	on	a	Christmas	tree’.

There	is	no	mystery	about	how	the	spiral	pattern	is	maintained.	It	is
all	thanks	to	feedback.	The	giant	clouds	from	which	new	stars	form	may
contain	as	much	as	a	million	times	the	mass	of	the	Sun	when	they	begin
to	collapse	to	make	stars.	Each	collapsing	cloud	produces	not	a	single
large	star,	but	a	whole	cluster	of	them,	as	well	as	many	lesser	stars.	As



the	bright	stars	light	up,	the	energy	of	their	starlight	(especially	in	the
ultraviolet	part	of	the	spectrum)	makes	a	bubble	within	the	cloud,	and
tends	to	stop	any	more	stars	forming.	But	after	the	massive	stars	have
run	through	their	lifecycles	and	exploded,	as	well	as	seeding	the
interstellar	material	with	elements	of	many	kinds,	the	blast	wave	gives	a
squeeze	to	the	nearby	interstellar	clouds	and	makes	them	begin	to
collapse.	Such	waves	from	different	supernovae,	criss-crossing	one
another,	interact	to	sweep	up	interstellar	material	and	make	new	clouds
of	collapsing	gas	and	dust,	which	give	birth	to	more	stars	and
supernovae,	in	a	classic	example	of	a	self-sustaining	interaction
involving	an	input	of	energy	(from	supernovae)	and	feedback.	Computer
simulations	show	that	there	is	a	favoured	density	of	cloud	for	the	self-
sustaining	process	to	continue,	and	that	the	feedbacks	naturally	move
the	process	towards	these	optimum	conditions.	If	the	cloud	is	too	dense,
its	inner	region	will	collapse	very	quickly	to	form	a	few	large	stars	which
swiftly	run	through	their	lifecycles	and	blow	the	cloud	apart	before
many	stars	can	form.	This	means	that	the	next	generation	of	stars	is	born
from	a	thinner	cloud,	because	there	have	been	few	supernovae	to	sweep
the	material	up	into	dense	patches.	If	it	is	thinner	than	the	optimum
density,	many	stars	will	be	born,	and	there	will	be	many	supernova
explosions,	which	produce	many	Shockwaves	that	sweep	the	interstellar
material	up	into	denser	clouds.	From	either	side,	the	feedbacks	operate
to	maintain	a	roughly	constant	balance	between	the	density	of	the
clouds	and	the	number	of	supernovae	(and	sun-like	stars)	being
produced	in	each	generation.	The	spiral	pattern	itself	results	from	the
fact	that	the	galaxy	is	rotating,	and	that	it	is	held	in	the	gravitational
grip	of	all	the	dark	matter	–	analogous	to	the	way	the	spiral	pattern



made	by	cream	poured	into	your	coffee	results	from	the	fact	that	it	is
rotating	and	held	in	the	grip	of	the	dark	coffee.	In	fact,	the	spiral	pattern
moves	around	the	galaxy	at	a	speed	of	about	30	kilometres	per	second,
while	the	stars	and	clouds	of	gas	and	dust	that	make	up	the	bulk	of	the
disc	of	the	galaxy	move	at	speeds	of	about	250	kilometres	per	second,
overtaking	the	spiral	arms	and	getting	squeezed	as	they	pass	through
them.	Every	hundred	million	years	or	so,	everything	in	the	disc	of	the
galaxy	is	subjected	to	this	squeeze	twice,	once	on	each	side	of	the

galaxy,	as	it	orbits	the	centre.12

Away	from	all	this	activity,	in	the	rest	of	a	galaxy	like	the	Milky	Way
there	are	all	the	quieter,	longer-lived	stars	like	the	Sun,	and	at	least	15
per	cent	as	much	material	in	the	form	of	gas	and	dust	in	the	disc	of	the
galaxy	as	there	is	in	the	form	of	stars.	This	interstellar	material	comes	in
different	varieties.	There	are	the	clouds	of	cold	gas	and	dust,	rich	in
interesting	molecules	and	dubbed	giant	molecular	clouds,	from	which
new	stars	(and	planets)	form.	There	are	clouds	of	what	we	would	think
of	as	‘normal’	gas,	made	of	atoms	and	molecules	of	things	like	hydrogen,
and	perhaps	as	warm	as	the	room	you	are	sitting	in.	And	there	are
regions	that	have	been	superheated	by	the	energy	from	stellar
explosions,	so	that	electrons	have	been	ripped	from	their	atoms	to	form
an	electrically	charged	plasma.	There	is	also	a	great	variety	of	densities
within	the	interstellar	medium.	At	its	thinnest,	the	stuff	between	the
stars	is	so	sparse	that	there	is	just	one	atom	in	every	thousand	cubic
centimetres	of	space;	at	its	most	dense,	clouds	that	are	about	to	give
birth	to	new	stars	and	planets	may	contain	a	million	atoms	per	cubic
centimetre.	That	is	still	very	dilute	compared	with,	say,	the	air	that	we
breathe,	where	each	cubic	centimetre	contains	more	than	ten	billion



billion	molecules,	but	a	difference	of	a	factor	of	a	billion	in	density	is
still	a	spectacular	contrast.	The	point	which	Smolin	and	a	few	other
researchers	picked	up	on	at	the	end	of	the	1990s	is	that	in	all	these
respects	–	composition,	temperature	and	density	–	the	interstellar
medium	is	far	from	being	uniform.	It	is	most	emphatically	not	in
equilibrium,	and	it	seems	that	it	is	being	maintained	far	from
equilibrium	by	processes	associated	with	the	production	of	the	spiral
pattern.

This	means	that	the	Milky	Way	(like	other	spiral	galaxies)	is	a	region
of	entropy	reduction.	It	is	a	self-organizing	system	maintained	far	from
equilibrium	by	a	flow	of	energy	through	the	system,	and,	as	we	have
seen,	by	feedback.	At	this	level,	the	Galaxy	passes	the	Lovelock	test	for
life,	and	Smolin	has	argued	that	galaxies	should	be	regarded	as	living
systems.	A	more	cautious	approach	is	to	point	out	that	the	Lovelock	test
constitutes	what	is	called	a	‘necessary	but	not	sufficient’	criterion	for	the
existence	of	life.	If	a	system	is	in	thermodynamic	equilibrium	–	if	it	fails
the	Lovelock	test	–	then	we	know	for	sure	that	it	is	dead.	If	it	is	alive,	it
must	produce	an	entropy	reduction	and	pass	the	Lovelock	test.	But	a
system	might	produce	negative	entropy	without	being	alive,	as	in	the
case	of	gravitational	collapse	that	we	discussed	earlier.	There	is	no	clear
boundary	between	living	and	non-living	things,	from	this	perspective.	A
sandpile	on	which	grains	are	dribbled	from	above	maintains	itself	in	a
critical	state,	feeding	off	outside	energy,	but	is	certainly	not	alive;	a
human	being	certainly	is	alive;	people	still	argue	about	whether	Gaia	can
be	regarded	as	a	single	living	system;	as	for	galaxies,	this	kind	of
investigation	has	only	just	begun,	and	I	wouldn’t	like	to	bet	on	how	the
consensus	will	turn	out.	The	very	fact	that	the	boundary	between	life
and	non-life	is	blurred,	and	where	to	draw	the	boundary	is	a	subject	for



and	non-life	is	blurred,	and	where	to	draw	the	boundary	is	a	subject	for
discussion,	is,	though,	an	important	discovery.	It	helps	to	make	clear
that	there	is	nothing	unusual	about	life	in	the	context	of	the	way	the
Universe	works.	As	we	have	seen,	it	is	natural	for	simple	systems	to
organize	themselves	into	networks	at	the	edge	of	chaos,	and	once	they
do	so	it	is	natural	for	life	to	emerge	wherever	there	is	a	suitable	‘warm
little	pond’.	It	is	part	of	a	more	or	less	continuous	process,	with	no
sudden	leap	where	life	begins.	From	that	perspective,	the	most
important	thing	that	science	could	achieve	would	be	to	discover	at	least
one	other	planet	where	life	has	emerged.	Thanks	to	Lovelock’s	insight
about	the	nature	of	life,	we	are	on	the	edge	of	being	able	to	do	just	that,
and	telescopes	capable	of	detecting	other	Gaias	could	be	launched	into
space	within	the	next	twenty	or	thirty	years.

There	are	two	stages	to	discovering	other	Gaias.	First,	we	have	to
detect	Earth-sized	planets	in	orbit	around	other	stars;	then,	we	have	to
analyse	the	atmospheres	of	those	planets	for	evidence	of	entropy-
reducing	processes	at	work.	The	first	‘extra-Solar’	planets	were	detected
using	Doppler	techniques,	which	reveal	tiny	changes	in	the	motion	of
the	stars	those	planets	orbit	around.	The	effect,	named	after	the
nineteenth-century	physicist	Christian	Doppler,	shifts	the	position	of
lines	in	the	spectrum	of	light	from	an	object	by	an	amount	which
depends	on	how	fast	the	object	is	moving	relative	to	the	observer.	To	put
these	kinds	of	observations	in	perspective,	the	gravitational	pull	of
Jupiter,	tugging	on	the	Sun,	produces	a	velocity	shift	of	about	12.5
metres	per	second,	and	moves	the	Sun	bodily	(relative	to	the	centre	of
mass	of	the	Solar	System)	across	a	distance	of	800,000	kilometres,	just
over	half	the	solar	diameter,	as	the	Sun	and	Jupiter	orbit	around	their



mutual	centre	of	mass.	The	speed	of	this	motion	is	comparable	to	that	of
an	Olympic	100-metres	sprinter,	and	to	an	observer	outside	the	Solar
System	this	produces	a	tiny	to-and-fro	shift	in	the	exact	position	of	the
lines	in	the	spectrum	of	light	emitted	by	the	Sun,	by	the	Doppler	effect.
This	is	the	kind	of	shift	that	has	been	detected	in	the	light	from	scores	of
stars	in	our	neighbourhood,	showing	that	they	are	orbited	by	Jupiter-like
companions.	For	comparison,	the	Earth	induces	a	velocity	shift	of	just	1
metre	per	second	(a	gentle	walking	pace)	in	the	Sun	as	it	orbits	around
it,	and	moves	the	Sun	by	only	450	kilometres,	relative	to	the	centre	of
mass	of	the	Solar	System.	We	do	not	yet	have	the	technology	to	measure
such	a	small	effect	at	distances	corresponding	to	those	of	even	the	nearer
stars,	which	is	why	no	other	Earths	have	yet	been	detected	by	this
method.

There	are	other	techniques	which	might	work	to	identify	small
planets,	and	which	are	sometimes	in	the	news.	For	example,	if	the	planet
happens	to	pass	directly	in	front	of	its	parent	star	(an	occultation,	or
transit),	producing	a	regular	dimming	of	the	light	from	that	star.
Statistically,	because	the	orbits	of	extra-Solar	planets	could	be	inclined
in	any	direction	relative	to	us,	only	1	per	cent	of	those	planets	will	be	in
orbits	suitable	for	us	to	see	occultations,	and	in	any	case	each	transit
lasts	for	just	a	few	hours	(once	a	year	for	a	planet	in	an	Earth-like	orbit;
once	every	eleven	years	for	a	planet	in	a	Jupiter-like	orbit).
Nevertheless,	there	are	plans	to	launch	satellites	into	space	in	the	next
few	years	(perhaps	as	early	as	2005)	in	order	to	monitor	large	numbers
of	stars	to	search	for	such	occultations.	If	100,000	stars	are	studied,	and
1,000	of	them	show	transits,	the	statistics	would	imply	that	virtually
every	Sun-like	star	is	accompanied	by	planets.	But	although	all	searches



of	this	kind	are	invaluable,	the	Doppler	technique	is	the	one	that	can	be
applied	most	generally	to	the	search	for	other	Earths.	And	however	other
Earths	are	found,	the	next	stage	in	the	search	for	other	Gaias	will	be	the
same.

The	best	immediate	prospect	of	finding	Earth-like	(at	least,	Earth-
sized)	planets	in	large	numbers	is	a	NASA	satellite	called	SIM,	from	the
name	Space	Interferometry	Mission.	This	could	be	launched	within	the
next	couple	of	years	(by	2005),	and	will	use	a	technique	known	as
interferometry,	in	which	data	from	several	small	telescopes	are
combined	to	mimic	the	observing	power	of	one	much	larger	telescope.	If
all	goes	well,	SIM	will	be	able	to	measure	the	positions	of	stars	so
accurately	that	it	will	detect	the	wobbles	caused	by	any	Earth-like
planets	orbiting	any	of	the	200	stars	closest	to	the	Sun,	and	any	Jupiter-
like	planets	out	to	a	distance	of	3,000	light	years	from	the	Sun.	Around
the	end	of	the	first	decade	of	the	twenty-first	century	(again,	if	all	goes
well),	the	European	Space	Agency	will	launch	a	satellite	with	the	slightly
misleading	name	GAIA,	whose	main	mission	is	not	actually	to	look	for
other	Gaias	but	to	map	the	positions	of	the	billion	brightest	objects	in
the	sky.	Because	GAIA	will	be	looking	at	so	many	stars,	it	will	not	look
at	each	one	of	them	very	often	or	for	very	long,	so	it	will	not	be	able	to
detect	wobbles	caused	by	Earth-sized	planets;	but	it	will	be	able	to
detect	Jupiter-sized	planets	in	orbits	with	periods	longer	than	about	a
couple	of	years.	If	planets	are	as	common	as	the	first	indications	from
ground-based	telescopes	suggest,	then	within	ten	years	we	should	have
identified	tens	of	thousands	of	extra-Solar	planetary	systems	in	our
neighbourhood	of	the	Milky	Way	Galaxy.	But	these	would	still	only	be
indirect	observations,	and	in	order	to	take	the	spectra	of	some	of	those
planets	a	further	technological	leap	is	needed.
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Both	NASA	and	ESA	are	working	on	next-generation	projects	that
could	use	that	technology	to	make	those	observations	by	2030.	Because
of	the	huge	cost	of	any	such	mission,	however,	it	seems	likely	that	at
some	stage	the	efforts	will	be	merged	into	one	truly	global	project.	It
would	be	a	collaboration	among	all	the	relevant	experts	on	Earth	to
search	for	evidence	that	they	(and	we)	are	not	alone	in	the	Universe	–
Gaia	as	a	whole	looking	for	other	Gaias.	The	ESA	project	has	been
known	as	Project	Darwin,	but	is	also	referred	to,	more	prosaically,	as	the
Infrared	Space	Interferometer	(IRSI);	the	NASA	equivalent	is	known	as
the	Terrestrial	Planet	Finder,	or	TPF.	But	both	would	work	on	exactly
the	same	principles.

Surprising	though	it	may	seem,	especially	after	seeing	those	images
from	space	of	the	Earth	as	a	bright	blue	and	white	ball	against	a	dark
background,	visible	light	does	not	offer	the	best	prospects	for	direct
detection	of	other	Earths.	There	are	two	reasons.	First,	the	visible	light
from	a	planet	like	the	Earth	is	essentially	the	reflected	light	from	its
parent	star,	so	it	is	not	only	relatively	weak,	but	very	difficult	to	pick	out
at	astronomical	distances	against	the	glare	of	the	light	from	the	star
itself.	Secondly,	terrestrial	planets	are	actually	brightest	in	the	infrared
part	of	the	electromagnetic	spectrum,	because	of	the	way	the	energy
they	absorb	from	the	Sun	is	re-radiated	in	the	infrared	part	of	the
spectrum,	with	wavelengths	longer	than	those	of	visible	light.	At	a
wavelength	of	a	few	microns,	Earth	is	the	brightest	planet	in	the	Solar
System,	and	would	stand	out	as	a	striking	object	to	any	suitably	sensitive
infrared	telescope	in	our	stellar	neighbourhood.	The	catch	is	that
because	infrared	radiation	is	absorbed	by	the	very	gases	in	the	Earth’s



atmosphere,	such	as	carbon	dioxide	and	water	vapour,	that	we	are
interested	in	finding,	the	telescope	to	search	for	other	Earths	will	have	to
be	placed	in	deep	space,	far	away	from	any	potential	sources	of
pollution.	It	will	also	have	to	be	very	sensitive,	which	means	very	large.
Which	is	why	we	are	talking	about	an	expensive,	international	project
that	will	take	decades	to	come	to	fruition.

The	plan	is	for	a	much	more	powerful	interferometer-based	telescope
than	SIM.	Like	all	interferometers,	this	will	require	that	the	signals	from
the	different	telescopes	be	added	together	with	great	accuracy.	When	the
technique	was	originally	developed	on	the	ground,	using	radio
telescopes,	the	signals	were	brought	together	using	wires;	now,	it	is
routine	to	use	laser	beams	in	this	kind	of	work,	and	that	technology	will
be	essential	for	the	planet	finder	telescope,	whatever	name	it	eventually
flies	under.	Each	of	the	two	proposals	now	on	the	drawing	board	is	for	a
group	of	six	satellites	(six	telescopes)	that	will	fly	in	formation,	at	least
100	metres	apart,	at	the	corners	of	a	hexagon.	The	relative	positions	of
the	spacecraft	will	have	to	be	measured	to	an	accuracy	of	better	than
one	millimetre	(again,	using	lasers),	while	the	information	from	the
telescopes	is	combined	into	one	signal	in	a	central	master	satellite,	and
beamed	back	to	Earth,	perhaps	600	million	kilometres	away.	Such	an
instrument	will	be	able	to	detect	the	infrared	emissions	from	Earth-like
planets	(or	rather,	planets	like	Earth,	Venus	and	Mars,	in	comparable
orbits	to	those	of	Earth,	Venus	and	Mars)	orbiting	around	a	few	hundred
stars	out	to	a	distance	of	about	fifty	light	years.	The	next	step	is	to	take
the	spectra	of	those	planets	–	exactly	the	step	that	Jim	Lovelock	realized
was	the	best	way	to	search	for	life	on	Mars.

All	of	this	takes	time,	and	the	more	planets	you	look	at	in	each	stage



of	the	search	the	less	time	you	can	spend	looking	at	each	planet.	So,	for
a	planned	six-year	mission,	the	first	two	years	would	be	spent	looking	at
as	many	stars	as	possible	to	find	any	sign	of	infrared	emission	from
planets.	Over	the	next	two	years,	about	eighty	of	the	best	candidates
would	be	studied	in	more	detail,	with	about	200	hours	of	observing	time
devoted	to	each	target,	to	search	for	the	prominent	spectral	features	in
the	infrared	associated	with	carbon	dioxide,	and	the	slightly	less
prominent	features	associated	with	water	vapour.	The	presence	of	these
gases	alone	is	not	a	sign	of	life,	but	it	would	be	a	sign	of	the	existence	of
planets	that	were	terrestrial	in	the	sense	of	having	an	atmosphere	like
Venus	and	Mars,	while	water	in	particular	would	indicate	a	probable
home	for	life.	From	those	eighty	candidates,	in	the	final	stage	of	the
mission	twenty	targets	would	be	selected	to	study	for	about	800	hours
each,	the	time	required	to	bring	out	traces	of	the	most	exciting	potential
feature	of	this	part	of	the	spectrum	–	infrared	features	of	oxygen.	These
would	not	be	from	the	kind	of	ordinary,	di-atomic	molecules	of	oxygen
(O2)	that	we	breathe,	because	di-atomic	oxygen	does	not	emit	or	absorb

in	this	part	of	the	spectrum.	But	any	terrestrial	planet	which,	like	the
Earth,	has	an	oxygen-rich	atmosphere	will	also	have	an	ozone	layer,
produced	by	the	action	of	the	light	from	its	parent	star	on	di-atomic

oxygen	to	make	tri-atomic	ozone	(O3).	And	ozone	produces	a	sharp
feature	in	the	infrared	spectrum,	as	it	happens	smack	between	the
features	associated	with	carbon	dioxide	and	water	vapour.	The	presence
of	this	feature	alone	(or	the	presence	of	features	indicating	other	active
compounds,	such	as	methane)	would	be	enough	to	tell	us	that	the
atmosphere	of	a	planet	orbiting	a	star	several	tens	of	light	years	away	is
not	in	thermodynamic	equilibrium,	and	that	entropy	reduction	processes



–	in	other	words,	life	–	are	at	work	on	its	surface.	And	all	without	any
space	probe,	let	alone	a	human	being,	even	leaving	the	Solar	System.

This	is	the	most	striking	example	we	know	of	the	deep	simplicity
which	underpins	the	Universe.	The	most	complex	things	in	the	known
Universe	are	living	creatures,	such	as	ourselves.	These	complex	systems
are	made	from	the	most	common	raw	materials	known	to	exist	in
galaxies	like	the	Milky	Way.	In	the	form	of	amino	acids,	those	raw
materials	naturally	assemble	themselves	into	self-organizing	systems,
where	simple	underlying	causes	can	produce	surface	complexity,	as	in
the	case	of	the	leopard	and	its	spots.	Finally,	in	order	to	detect	the
presence	of	these	most	complex	of	universal	systems	you	do	not	need
any	sophisticated	tests	to	distinguish	living	from	non-living,	but	only	the
simplest	techniques	(albeit	aided	by	highly	advanced	technology)	to
identify	the	presence	of	one	of	the	simplest	compounds	in	the	Universe,
oxygen.	Chaos	and	complexity	combine	to	make	the	Universe	a	very
orderly	place,	just	right	for	life-forms	like	us.	As	Stuart	Kauffman	has	put
it,	we	are	‘at	home	in	the	Universe’.	But	it	isn’t	that	the	Universe	has
been	designed	for	our	benefit.	Rather,	we	are	made	in	the	image	of	the
Universe	itself.

Figure	7.6	A	simulation	of	what	the	spectrum	of	the	Earth	would	look	like	to	the	Darwin	telescope	at	a
distance	of	thirty	light	years.	If	instruments	like	Darwin	find	spectra	like	this	from	planets	orbiting	other



stars,	it	will	show	that	entropy-reducing	processes	are	at	work	on	those	planets,	and	indicate	the
probable	presence	of	life	beyond	the	Solar	System.
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1.	Quoted	by,	for	example,	Roger	Lewin,	in	Complexity.



1.There	is	no	evidence,	by	the	way,	that	Galileo	himself	ever	carried	out	such	an	experiment
from	the	leaning	tower	in	Pisa,	a	myth	which	seems	to	have	originated	in	the	colourful
biography	of	Galileo	written	by	Vincenzo	Viviani,	who	was	only	seventeen	when	he	became
Galileo’s	hero-worshipping	scribe	after	the	great	man	went	blind	in	old	age.



2.	A	single	copy	of	one	of	Archimedes’	manuscripts,	lost	for	centuries,	was	translated	late	in	the
twentieth	century	and	revealed	that	the	great	Greek	mathematician	had	developed	the	essence	of
this	kind	of	integration	more	than	two	millennia	ago.	This	was,	of	course,	completely	unknown
to	Newton	and	Leibniz,	but	puts	their	squabble	over	priority	in	a	different	perspective.



3.	It’s	perhaps	worth	pointing	out	that	only	as	1609,	when	Johann	kepler	realized	that	something
must	be	holding	the	plants	in	their	orbits	around	the	sun,	he	had	called	it	the	‘Holy	Sprit	Force’
and	nobody	laughed.



4.	The	same	is	true	if	three	moving	balls	collide	with	one	another	simultaneously,	but	that	is
even	harder	to	arrange.



5.	We	use	billion	in	the	conventional	scientific	sense,	meaning	thousand	million.



6.	This	gloomy	prognosis	has	now	been	superseded.	The	fact	that	the	Universe	is	expanding
(discovered	only	at	the	end	of	the	1920s)	alters	the	whole	context	of	such	forecasts,	and	the
realization	that	gravity	effectively	has	negative	energy,	dating	from	the	1940s,	essentially	rules
out	the	kind	of	heat	death	imagined	by	the	Victorians.	These	intriguing	ideas	are	discussed	in	my
book	In	the	Beginning	(Penguin,	1994)	and	by	Paul	Davies	in	The	Cosmic	Blueprint	(Heinemann,
1987);	more	of	this	later.



7.	Entre	le	temps	et	I’éternité,	Fayard,	Paris,	1988.	Prigogine	died	in	2003,	just	as	this	book	went	to
press.



8.	He	was	so	proud	of	this	equation,	S	=	klogP,	that	it	is	carved	on	his	gravestone.



9.	There	are	a	thousand	cc	in	a	litre,	not	a	hundred!



10.	Available	in	a	reprint	from	University	of	California	Press,	Berkeley,	1964;	originally
published	in	German	in	two	volumes,	1896	and	1898.



11.	It	was	because	of	such	criticism	that	Boltzmann	later	came	up	with	the	idea	of	our	world	as	a
local	fluctuation	in	a	dead	Universe,	in	an	attempt	to	salvage	something	from	the	wreckage.



12.	For	the	cycle	time	to	equal	the	age	of	the	Universe,	of	course,	the	box	would	have	to	contain
just	17	particles.



1.	The	term	‘phase’	is	used	for	historical	reasons	and	has	no	significance	today	except	as	a	name.



2.	For	the	mathematically	inclined,	the	force	is	the	rate	of	change	of	momentum,	or	the	first
derivative	of	momentum.



3.	This	approach	was,	in	fact,	used	with	some	success	late	in	the	nineteenth	century	by	the
American	astronomer	George	Hill	to	calculate	the	Moon’s	orbit.



4.	It’s	actually	even	more	complicated	than	this.	Remember	that	phase	space	involves	higher
numbers	of	dimensions	than	we	are	used	to.	So	a	Poincaré	section	is	not	(generally)	a	simple
two-dimensional	surface,	but	a	multi-dimensional	surface.	This	allows	an	even	more	complicated
tangle	of	infinite	possibilities,	called	a	homoclinic	tangle.	But	for	our	purposes	it’s	enough	to
know	that	the	possibilities	are	indeed	infinite.



5.	An	unstable	equilibrium	is	like	a	pencil	balanced	on	its	point.	Poincaré	is	saying	that	in	such	a
situation	we	know	the	pencil	will	fall	over,	but	we	cannot	predict	which	direction	it	will	fall	in.



6.	He	was	also	an	uncle	of	the	actor	Ralph	Richardson,	though	that	has	no	relevance	to	our	story.



7.	Contrast	this	approach	with	the	traditional	‘synoptic’	forecast,	which	is	based	on	studying
weather	patterns	on	a	chart	and	using	a	basic	understanding	of	the	physics	involved	plus	a	gut
feeling	that	develops	with	experience	to	guess	how	the	highs	and	lows	will	move	over	the	next
few	hours.



8.	They	could	each	be	working	on	the	data	for	one	grid	point,	perhaps.



9.	See	Edward	Lorenz,	The	Essence	of	Chaos.



10.	The	paper	is	reproduced	in	his	book	The	Essence	of	Chaos.



11.	Quoted	by	Ian	Stewart,	in	Does	God	Play	Dice?



12.	The	contribution	by	Franco	Vivaldi	to	The	New	Scientist	Guide	to	Chaos	(edited	by	Nina	Hall)
will	give	you	some	ideas.



13.	For	historical	reasons,	the	object	known	as	Pluto	is	also	still	usually	called	a	planet,	although
in	fact	it	is	simply	the	largest	member	of	a	belt	of	icy,	frozen	objects	beyond	the	Iorbit	of
Neptune,	debris	left	over	from	the	formation	of	the	Solar	System.



14.	See	John	and	Mary	Gribbin,	Fire	on	Earth.



15.	The	rational	expression	 ,	often	used	as	an	approximation	to	π,	is	just	that–an	approximation;
it	is	not	really	π.



1.	Strictly	speaking,	a	limit	cycle	would	be	a	closed	loop	in	phase	space,	but	for	our	purposes	we
can	think	of	it	as	a	single	lobe	of	the	Lorenz	attractor.



2.	Intriguingly,	though,	just	after	writing	this	section	I	was	out	shopping	after	a	heavy	shower	of
rain,	and	while	waiting	in	a	queue	at	the	hardware	store	I	noticed	a	drip	from	a	leaky	gutter
outside	the	window,	where	I	could	clearly	both	see	the	sets	of	four	falling	drops	and	hear	their
impact	on	the	pavement	below	making	exactly	this	rat-a-tat-tat	rhythm!



3.	Feigenbaum’s	number	is	actually,	like	π	and	most	other	numbers,	irrational.	To	a	few	more
decimal	places,	it	can	be	written	4.6692016090.



4.	Just	a	year	later,	David	Hilbert	(1862–1943)	made	the	same	discovery.



5.	See	his	contribution	to	The	New	Scientist	Guide	to	Chaos,	edited	by	Nina	Hall.



6.	Unknown	to	Cantor,	this	set	had	already	been	discovered	by	the	clever	but	rather	self-effacing
Dublin-born	mathematician	Henry	Smith	(1826–83),	in	1875.	But	with	Smith	dead	and	his
discovery	virtually	unknown,	it	was	Cantor’s	name	that	got	attached	to	the	set.



7.	That	kind	of	problem	is	largely	overcome	with	digital	transmission	of	data,	but	this	was	still	in
the	days	of	analogue	signals.



8.	Quoted	by	James	Gleick	in	Chaos.



9.	There	are	actually	slightly	different	ways	to	measure	fractal	dimension,	which	give	slightly
different	‘answers’,	so	you	may	see	a	slightly	different	value	quoted	somewhere	else.	But	we
don’t	want	to	go	into	these	subtleties	here,	and	will	leave	them	for	the	mathematicians.	What
matters	to	us	is	that	here	is	indeed	at	least	one	fairly	obvious	way	to	measure	fractal	dimensions.



1.	Strictly	speaking,	as	the	value	of	a	parameter	called	the	Rayleigh	Number	increases.	This
number	depends	not	only	on	the	temperature	gradient	but	also	on	the	properties	of	the	fluid.



2.	See	In	Search	of	the	Big	Bang.



3.	See	George	Gamow,	My	World	Line.



4.	See	Paul	Davies,	The	Fifth	Miracle.



5.	A	topic	covered	in	my	book	Stardust.



6.	Energy	also	comes	from	within	the	Earth,	chiefly	as	a	result	of	the	decay	of	radioactive
elements	in	the	Earth’s	core.	This	radioactive	material	was	produced	in	previous	generations	of
stars,	and	spread	through	space	when	those	stars	exploded,	becoming	part	of	the	interstellar
cloud	from	which	the	Solar	System	formed.	So	this	energy	source,	too,	ultimately	owes	its	origin
to	gravity.	Life	forms	that	feed	off	this	energy,	which	escapes	through	hot	vents	in	the	ocean
floor,	may	do	so	entirely	independently	of	the	energy	from	sunlight,	but	they	are	as	much	a
product	of	gravity	as	we	are.



7.	Technically,	Turing	proved	that	such	a	machine	could	solve	any	computable	problem,	which
means	one	that	can	be	specified	using	a	suitable	algorithm;	he	also	proved	that	some	problems
are	not	computable,	which	is	of	profound	interest	to	mathematicians	and	is	related	to	the	idea
that	some	things	are	not	algorithmically	compressible.



8.	Philosophical	Transactions	of	the	Royal	Society,	1952,	volume	B237,	p.	37;	this	is	now	regarded
as	one	of	the	most	influential	papers	in	the	whole	field	of	theoretical	biology.



9.	Turing	seems	to	have	had	an	obsession	with	poison.	His	biographer	Andrew	Hodges	describes
how	Turing	went	to	see	the	movie	Snow	White	and	the	Seven	Dwarfs	in	Cambridge	in	1938,	and
was	very	taken	‘with	the	scene	where	the	Wicked	Witch	dangled	an	apple	on	a	string	into	a
boiling	brew	of	poison,	muttering:	“Dip	the	apple	in	the	brew.	Let	the	Sleeping	Death	seep
through.”	’	Apparently,	Turing	was	fond	of	chanting	the	couplet	‘over	and	over	again’	long	before
he	suited	the	action	to	the	rhyme.



10.	Such	oscillating	systems	are	known	today	as	‘chemical	clocks’	because	of	the	regularity	of
their	rhythms;	but	this	regularity	is	only	relative,	and	they	are	not	accurate	enough	to	use	as	real
clocks.



11.	Acting	on	the	advice	of	an	outside	expert,	a	‘referee’	used,	as	with	most	learned	journals,	to
vet	the	suitability	of	papers	for	publication.



12.	An	English	translation	of	the	original	rejected	paper	was	eventually	published	in	1985,	in
Oscillations	and	Travelling	Waves	in	Chemical	Systems,	edited	by	R.	J.	Field	and	M.	Burger,	Wiley,
New	York.



13.	This	was	found	in	1983	by	a	team	at	the	University	of	Texas,	Austin,	which	included	Harry
Swinney,	who	was	later	one	of	the	first	people	to	make	the	‘Turing	spot’	pattern.



14.	Volume	258,	number	3,	p.	80.



15.	Named	after	the	English	logician	and	philosopher	William	of	Ockham	(c.1285-1349),	who
said	‘entities	ought	not	to	be	multiplied	except	of	necessity’.



16.	My	favourite	examples	of	evolution	at	work	today	are	the	way	‘superbugs’	have	evolved
resistance	to	antibiotics,	and	insect	pests	have	evolved	resistance	to	insecticides.



17.	Important	experiments	along	these	lines,	using	chicks,	were	carried	out	by	Lewis	Wolpert	and
his	colleagues	in	London.



1.	As	is	a	cog	in	a	clockwork	chronometer,	which	would	serve	as	an	equally	valid	example	in	the
following	argument.



2.	The	name	‘Richter	scale’	is	actually	applied	today	to	modern	versions	of	the	scale,	which	differ
slightly	from	Richter’s	original,	but	the	differences	are	not	important	for	the	discussion	here.



3.	‘Logarithm’	is	another	term	that	frightens	people	who	have	an	aversion	to	mathematics
(usually	caused	by	bad	teaching).	It	is	simply	a	way	of	expressing	numbers	in	terms	of	powers	of

ten,	or	powers	of	some	other	chosen	number.	For	example,	100	is	102	so	the	logarithm	of	100	is
2.	That	is	absolutely	all	there	is	to	it,	and	all	you	need	to	remember	is	that	logarithms	are	ways
of	expressing	numbers	as	powers.



4.	Plotting	the	logarithm,	instead	of	the	simple	number,	up	the	side	of	the	graph,	just	means	that
instead	of	equal	steps	up	the	axis	being	labelled	1,	2,3	and	so	on,	they	are	labelled	1,10,	100	and
so	on.



5.	See	J.	Feder,	Fractals



6.	And	probably	longer,	but	quasars	were	only	discovered	in	the	early	1960s	and	photographic
records	of	objects	now	known	to	be	quasars	only	go	back	to	the	1880s.



7.	K.	Nagel	and	M.	Paczuski,	‘Emergent	Traffic	Jams’,	Physical	Review,	1995,	E51,	p.	2909.



8.	Although,	of	course,	some	jams	are	caused	by	crashes,	just	as	some	earthquakes	are	caused	by
underground	nuclear	tests,	and	some	global	warming	is	caused	by	human	activities.



9.	But	if	you	want	to	know	more	about	this	aspect	of	the	application	of	power	laws,	we
recommend	Mitchell	Waldrop’s	book	Complexity,	or	Mark	Buchanan’s	Ubiquity.



10.	Not	all	of	them;	birds	are	thought	to	be	descended	from	one	or	more	dinosaur	lines.



11.	Nature,	1990,	vol.	343,	p.	251.



12.	If	you	want	more	detail,	see	our	book	Fire	on	Earth.



13.	We	don’t	need	to	worry	too	much	about	the	subtleties	of	biological	nomenclature,	but,	for
the	record,	a	species	is	the	lowest	level	of	the	classification	scheme;	a	species	is	a	member	of	a
genus,	and	a	genus	is	a	member	of	a	family.



14.	Bak	(1947–2002)	died	just	as	this	book	was	being	completed.



15.	Actually,	this	is	almost	a	tautology.	In	this	context,	‘large’	really	means	‘being	made	up	of
many	parts’,	rather	than	having	to	do	with	the	literal	physical	size	of	a	system.



16.	One	at	a	time,	because	we	are	interested	in	systems	that	are	in	a	kind	of	steady	state,	like	the
living	human	body,	only	being	disturbed	slightly	as	they	feed	off	a	steady	flow	of	energy.	Things
are	different	if	you	dump	a	whole	bucketful	of	sand	on	the	pile,	just	as	what	happens	to	life	on
Earth	would	be	different	if,	instead	of	a	steady	flow	of	energy	from	the	Sun,	all	of	the	Sun’s
energy	were	released	in	one	vast	explosion.



17.	He	suggests	Lego,	but	then	he	was	a	Dane.	Wooden	cubes	work	better.



18.	For	this	toy	model,	it	doesn’t	matter	if	the	numbers	the	computer	generates	are	not	truly
random.



19.	It’s	also	intriguing,	to	an	astronomer,	that	this	network	pattern	resembles	the	network	pattern
of	galaxies	scattered	across	the	Universe;	but	I	have	no	evidence	that	this	is	a	significant
similarity.



20.	Modern	investigations	of	the	Universe	at	large	have	revealed	that	the	kind	of	clouds	in	space
from	which	planetary	systems	like	our	own	form	contain	a	great	variety	of	molecules,	up	to	and
including	amino	acids,	that	would	have	been	brought	down	to	the	surface	of	the	Earth	by	comets
when	the	Solar	System	was	young,	seeding	our	planet,	if	not	with	life	itself	then	certainly	with
the	raw	materials	of	life.	More	of	this	later.



21.	See	Stuart	Kaufftnan,	At	Home	in	the	Universe.



22.	This	is	a	major	reason	why	genetic	engineering	will	never	be	as	simple	as	some	accounts
would	have	you	believe.	Even	if	it	is	possible	to	modify	a	single	gene	to,	say,	enhance	the
capability	of	the	lungs	(which	is	itself	pretty	unlikely),	by	changing	that	one	gene	we	would	also
be	changing,	in	as	yet	unpredictable	ways,	the	behaviour	of	all	the	genes	in	the	same	network.



23.	Named	after	George	Boole	(1815–64),	the	English	mathematician	who	developed	the	idea.
Boolean	algebra	is	important	in	many	programming	languages.



24.	There	is	one	other	parameter,	to	do	with	the	choice	of	Boolean	rules,	that	affects	these
systems,	but	this	is	a	kind	of	fine-tuning	and	does	not	affect	the	fundamental	point	we	are
making.



1.	See,	for	example,	Evolution	by	Carl	Zimmer,	or	The	Beak	of	the	Finch	by	Jonathan	Weiner.



2.	See	Carl	Zimmer,	Evolution,	p.	xii.



3.	The	same	argument	applies	to	plants,	of	course.	We	just	describe	it	in	terms	of	animal	life
since	that	emphasizes	that	it	applies	to	us	as	well.



4.	We	are	confident	that	everyone	who	reads	this	is	at	least	aware	of	the	idea	that	the	physical
characteristics	of	a	body	(its	phenotype)	are	determined	by	the	set	of	genes	within	its	cells	(the
genotype),	and	that	changes	in	the	phenotype	occur	because	of	changes	in	the	genotype,	which
can	happen,	for	example,	as	a	result	of	copying	errors	when	DNA	is	replicated,	and	are
sometimes	known	as	mutations.	If	you	want	to	remind	yourself	how	all	this	works,	almost	any
book	by	Richard	Dawkins	will	help,	or	you	might	try	In	Search	of	the	Double	Helix	by	John
Gribbin.



5.	‘Better’	means	‘leave	more	descendants’;	this	is	the	only	criterion	of	evolutionary	success.



6.	The	Red	Queen	terminology	was	introduced	by	evolutionary	biologist	Leigh	Van	Valen	of	the
University	of	Chicago	in	the	early	1970s.



7.	Actually,	this	appealing	image	is	upside-down	compared	with	Sewall	Wright’s	landscapes,
where	peaks	are	the	places	where	you	expect	to	find	species,	not	dips;	but	you	get	the	picture.



8.	Quoted	in	Mitchell	Waldrop,	Complexity.



9.	See	The	Mating	Game	by	John	Gribbin	and	Jeremy	Cherfas	(Penguin,	2001).



10.	On	the	appropriate	timescale,	you	can	also	regard	the	events	associated	with	the	drought	of
1977	on	the	Galápagos	as	an	example	of	punctuated	equilibrium.



11.	Our	mathematical	friends	insist	that	we	point	out	that	this	is	not	a	‘critical	state’	according	to
their	strict	definition	of	the	term;	but	it	does	correspond	closely	to	the	kind	of	critical	states	we
have	been	discussing,	and	the	subtlety	does	not	affect	the	point	we	are	making.



1.	Lovelock’s	delightful	autobiography,	Homage	to	Gaia,	describes	his	background	with	sometimes
painful	but	always	complete	honesty.



2.	Although	Lovelock	became	an	independent	researcher,	working	from	his	home	in	the	English
countryside,	in	the	1970s	he	also	became	an	honorary	Visiting	Professor	at	the	University	of
Reading.	This	unpaid	post	provided	him	with	what	he	called	‘a	respectable	cover’,	which	helped
to	get	papers	published	in	journals	whose	editors	were	suspicious	of	missives	sent	from	private
addresses;	it	also	gave	him	contact	with	other	researchers	and	students	who	he	could	bounce	his
ideas	off.



3.	See	Lovelock’s	Homage	to	Gaia.



4.	The	full	story	is	told	in	my	book	Stardust.



5.	Our	emphasis.



6.	Details	of	the	astronomical	theory	of	Ice	Ages	can	be	found	in	our	book	Ice	Age	(Penguin,
2001).



7.	Although	this	is	a	pretty	obvious	idea,	it	was	first	proposed	in	print	by	me,	in	Naturein	1988
(vol.	331,	p.	570).	I	have	so	few	bright	ideas	that	I	hope	I	will	be	forgiven	for	the	immodesty
involved	in	pointing	this	out!



8.	The	details	of	that	compelling	evidence	can	be	found	in	The	Birth	of	Timeby	John	Gribbin
(Phoenix,	1999).



9.	Apart	from	the	overwhelming	amount	of	hydrogen	in	our	Solar	System,	for	every	100	atoms	of
oxygen	there	are	57	atoms	of	carbon	and	13	atoms	of	nitrogen,	with	silicon,	the	next	most
common	element,	trailing	in	with	half	the	abundance	of	nitrogen.	But	everything	except
hydrogen	and	helium	together	makes	up	only	0.9	per	cent	of	the	mass	of	the	Solar	System.



10.	See	Nature(2002),	vol.	416,	pp.	401	and	403.



11.	Roughly	speaking,	the	distance	to	the	Andromeda	galaxy	is	about	20	times	its	diameter.	If	the
nearest	star	to	the	Sun	were	20	solar	diameters	away,	it	would	be	orbiting	the	Sun	at	a	distance
of	just	30	million	kilometres,	well	within	the	orbit	of	Mercury!



12.	At	least,	in	a	simple	spiral	galaxy	with	two	arms.	Some	have	more	complicated	structure,	but
discussion	of	these	subtleties	is	beyond	the	scope	of	the	present	book.
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