Connecting To The Server To Fetch The WebPage Elements!!....
MXPlank.com MXMail Submit Research Thesis Electronics - MicroControllers Contact us QuantumDDX.com



Search The Site






Rogue planetary orbit for Fomalhaut b






This false-colour composite image, taken with the Hubble Space Telescope, reveals the orbital motion of the planet Fomalhaut b. Based on these observations, astronomers calculated that the planet is in a 2000-year-long, highly elliptical orbit. The planet will appear to cross a vast belt of debris around the star roughly 20 years from now. If the planet's orbit lies in the same plane with the belt, icy and rocky debris in the belt could crash into the planet's atmosphere and produce various phenomena. The black circle at the centre of the image blocks out the light from the bright star, allowing reflected light from the belt and planet to be photographed. The Hubble images were taken with the Space Telescope Imaging Spectrograph in 2010 and 2012.



Newly released NASA Hubble Space Telescope images of a vast debris disk encircling the nearby star Fomalhaut and a mysterious planet circling it may provide forensic evidence of a titanic planetary disruption in the system.

Astronomers are surprised to find the debris belt is wider than previously known, spanning a section of space from 14 to nearly 20 billion miles from the star. Even more surprisingly, the latest Hubble images have allowed a team of astronomers to calculate the planet follows an unusual elliptical orbit that carries it on a potentially destructive path through the vast dust ring.

The planet, called Fomalhaut b, swings as close to its star as 4.6 billion miles, and the outermost point of its orbit is 27 billion miles away from the star. The orbit was recalculated from the newest Hubble observation made last year.

"We are shocked. This is not what we expected," said Paul Kalas of the University of California at Berkeley and the SETI Institute in Mountain View, Calif.

The Fomalhaut team led by Kalas considers this circumstantial evidence there may be other planet-like bodies in the system that gravitationally disturbed Fomalhaut b to place it in such a highly eccentric orbit. The team presented its finding Tuesday at the 221st meeting of the American Astronomical Society in Long Beach, Calif.

Among several scenarios to explain Fomalhaut b's 2,000-year-long orbit is the hypothesis that an as yet undiscovered planet gravitationally ejected Fomalhaut b from a position closer to the star, and sent it flying in an orbit that extends beyond the dust belt.

"Hot Jupiters get tossed through scattering events, where one planet goes in and one gets thrown out," said co-investigator Mark Clampin of NASA's Goddard Space Flight Center in Greenbelt, Md. "This could be the planet that gets thrown out."

Hubble also found the dust and ice belt encircling the star Fomalhaut has an apparent gap slicing across the belt. This might have been carved by another undetected planet. Hubble's exquisite view of the dust belt shows irregularities that strongly motivate a search for other planets in the system.

If its orbit lies in the same plane with the dust belt, then Fomalhaut b will intersect the belt around 2032 on the outbound leg of its orbit. During the crossing, icy and rocky debris in the belt could crash into the planet's atmosphere and create the type of cosmic fireworks seen when Comet Shoemaker-Levy 9 crashed into Jupiter. Most of the fireworks from collisions will be seen in infrared light. However, if Fomalhaut b is not co-planar with the belt, the only thing to be seen will be a gradual dimming of Fomalhaut b as it travels farther from the star.

Kalas hypothesized that Fomalhaut b's extreme orbit is a major clue in explaining why the planet is unusually bright in visible light, but very dim in infrared light. It is possible the planet's optical brightness originates from a ring or shroud of dust around the planet, which reflects starlight. The dust would be rapidly produced by satellites orbiting the planet, which would suffer extreme erosion by impacts and gravitational stirring when Fomalhaut b enters into the planetary system after a millennium of deep freeze beyond the main belt. An analogy can be found by looking at Saturn, which has a tenuous, but very large dust ring produced when meteoroids hit the outer moon Phoebe.

The team has also considered a different scenario where a hypothetical second dwarf planet suffered a catastrophic collision with Fomalhaut b. The collision scenario would explain why the star Fomalhaut has a narrow outer belt linked to an extreme planet. But in this case the belt is young, less than 10,000 years old, and it is difficult to produce energetic collisions far from the star in such young systems.

Fomalhaut is a special system because it looks like scientists may have a snapshot of what our solar system was doing 4 billion years ago. The planetary architecture is being redrawn, the comet belts are evolving, and planets may be gaining and losing their moons. Astronomers will continue monitoring Fomalhaut b for decades to come because they may have a chance to observe a planet entering an icy debris belt that is like the Kuiper Belt at the fringe of our own solar system.



NASA's Hubble Space Telescope has taken the first visible-light snapshot of the planet Fomalhaut B circling another star Fomalhaut.

Estimated to be no more than three times Jupiter's mass, the planet Fomalhaut B orbits the bright southern star Fomalhaut, located 25 light-years away in the constellation Piscis Australis (the Southern Fish).

Fomalhaut has been a candidate for planet hunting ever since an excess of dust was discovered around the star in the early 1980s by NASA's Infrared Astronomy Satellite (IRAS).

In 2004, the coronagraph in the High Resolution Camera on Hubble's Advanced Camera for Surveys produced the first-ever resolved visible-light image of a large dust belt surrounding Fomalhaut. It clearly showed that this structure is in fact a ring of protoplanetary debris approximately 21.5 billion miles across with a sharp inner edge.

This large debris disk is similar to the Kuiper Belt, which encircles the solar system and contains a range of icy bodies from dust grains to objects the size of dwarf planets, such as Pluto.

Hubble astronomer Paul Kalas, of the University of California at Berkeley, and team members proposed in 2005 that the ring was being gravitationally modified by a planet lying between the star and the ring's inner edge.

Circumstantial evidence came from Hubble's confirmation that the ring is offset from the center of the star. The sharp inner edge of the ring is also consistent with the presence of a planet that gravitationally "shepherds" ring particles. Independent researchers have subsequently reached similar conclusions.

Now, Hubble has actually photographed a point source of light lying 1.8 billion miles inside the ring's inner edge. The results are being reported in the November 13 issue of Science magazine.

"Our Hubble observations were incredibly demanding. Fomalhaut b is 1 billion times fainter than the star. We began this program in 2001, and our persistence finally paid off," Kalas says. "Fomalhaut is the gift that keeps on giving. Following the unexpected discovery of its dust ring, we have now found an exoplanet at a location suggested by analysis of the dust ring's shape. The lesson for exoplanet hunters is 'follow the dust,'" says team member Mark Clampin of NASA's Goddard Space Flight Center.

Observations taken 21 months apart by Hubble's Advanced Camera for Surveys' coronagraph show that the object is moving along a path around the star and therefore is gravitationally bound to it. The planet is 10.7 billion miles from the star, or about 10 times the distance of the planet Saturn from the sun.

The planet's upper-mass limit is constrained by the appearance of the Fomalhaut ring. If the planet were much more massive, it would distort the ring, and the effect would be observable in the ring's structure.

"It took the science team four months of analysis and theoretical modeling to determine that Fomalhaut b could not be more massive than three times the mass of Jupiter. Any more massive than that and its gravity would destroy the vast dust belt encircling the star," Kalas says.

Numerous computer simulations show that circumstellar disks will be gravitationally modified by the tug of one or more unseen planets. The Fomalhaut ring has a sharp inner edge that is likely shaped by the gravitational influence of a planet. The inner edge of our solar system's Kuiper Belt is similarly shaped by the gravitational influence of Neptune.

The planet is brighter than expected for an object of three Jupiter masses. One possibility is that it has a huge Saturn-like ring of ice and dust reflecting starlight. The ring might eventually coalesce to form moons. The ring's estimated size is comparable to the region around Jupiter that is filled with the orbits of the four largest satellites.

Because the Fomalhaut system is only 200 million years old, the planet should be a bright infrared object. That's because it is still cooling through gravitational contraction. However, ground-based telescopic observations at infrared wavelengths have not yet detected the planet. This also sets an upper limit on its mass, because the bigger the planet, the hotter and brighter it would be.

Kalas and his team first used Hubble to photograph Fomalhaut in 2004, and made the unexpected discovery of its debris disk, which scatters Fomalhaut's starlight. At the time they noted a few bright sources in the image as planet candidates. A follow-up image in 2006 showed that one of the objects is moving through space with Fomalhaut but changed position relative to the ring since the 2004 exposure. The amount of displacement between the two exposures corresponds to an 872-year-long orbit as calculated from Kepler's laws of planetary motion.

Fomalhaut moves across the sky at 0.425 arcseconds per year, which is the apparent width of a penny seen from five miles away.

The planet mysteriously dimmed by half a stellar magnitude between the 2004 and 2006 observations. This might mean that it has a hot outer atmosphere heated by bubbling convection cells on the young planet - sort of a Jupiter on steroids. Or, it might come from hot gas at the inner boundary of a ring around the planet.

The planet may have formed at its location in a primordial circumstellar disk by gravitationally sweeping up remaining gas. Or, it may have migrated outward through a game of gravitational billiards where it exchanged momentum with smaller planetary bodies. It is commonly believed that the planets Uranus and Neptune migrated out to their present orbits after forming closer to the sun and then gravitationally interacted with smaller bodies.

Fomalhaut is much hotter than our sun and is 16 times as bright. This means a planetary system could scale up in size with a proportionally larger Kuiper Belt feature and scaled-up planet orbits. For example, the "frost line" in our solar system - the distance where ices and other volatile elements will not evaporate - is roughly at 500 million miles from the sun. But for hotter Fomalhaut, the frost line is at roughly 1.9 billion miles from the star.

Fomalhaut is burning hydrogen at such a furious rate through nuclear fusion that it will burn out in only 1 billion years, which is 1/10th the lifespan of our sun. This means there is little opportunity for advanced life to evolve on any habitable worlds the star might possess.

Future observations will attempt to see the planet in infrared light and will look for evidence of water vapor clouds in the atmosphere. This would yield clues to the evolution of a comparatively newborn 100-million-year-old planet. Astrometric measurements of the planet's orbit will provide enough precision to yield an accurate mass.

NASA's James Webb Space Telescope, scheduled to launch in 2013, will be able to make coronagraphic observations of Fomalhaut in the near- and mid-infrared. JWST will be able to hunt for other planets in the system and probe the region interior to the dust ring for structures such as an inner asteroid belt.

The science team members are: P. Kalas, J. Graham, E. Chiang, and E. Kite (University of California, Berkeley), M. Clampin (NASA Goddard Space Flight Center, Greenbelt, Md.), M. Fitzgerald (Lawrence Livermore National Laboratory, Livermore, Calif.), and K. Stapelfeldt and J. Krist (NASA Jet Propulsion Laboratory, Pasadena, Calif.).

CREDITS:

NASA/ESA and The Hubble Heritage Team (STScI/AURA)

NASA, ESA, P. Kalas, J. Graham, E. Chiang, E. Kite (University of California, Berkeley), M. Clampin (NASA Goddard Space Flight Center), M. Fitzgerald (Lawrence Livermore National Laboratory), and K. Stapelfeldt and J. Krist (NASA Jet Propulsion Laboratory)