Connecting To The Server To Fetch The WebPage Elements!!....
MXPlank.com MXMail Submit Research Thesis Electronics - MicroControllers Contact us QuantumDDX.com




Search The Site







MXPlank News Letter - 2021-09-22







The colour of HD 189733b compared to our Solar System






This plot compares the colours of Solar System planets to the colour of the hot Jupiter HD 189733b. With the exception of Mars, the colours are primarily determined by the chemistry of the planets' atmospheres. Earth's blue atmosphere plus the blue tint of the oceans dominate our world's hue. HD 189733b's deep blue colour is produced by silicate droplets, which scatter blue light in the scorching atmosphere.




Credit:
NASA/ESA and The Hubble Heritage Team (STScI/AURA)





Quantum mechanics says some black hole orbits are impossible to predict

Foreseeing the paths of three orbiting objects sometimes requires precision better than the quantum limit

Raghunath Tiruvaipati 2024-12-28 04:23:36AM Nebuelas
For a trio of orbiting black holes (illustrated),
even if their locations are known to the quantum limit,
it's not always possible to predict their future paths. NASA, CXC, A. HOBART, T. TIBBITTS


Even if you could measure three black holes' locations as precisely as physically possible, you still might not know where the black holes would go. Such a trio's complex dance can be so chaotic that the motions are fundamentally unpredictable, new computer simulations show.

The paths of three black holes orbiting each other can be calculated based on their positions and velocities at one point in time. But in some cases, the orbits depend so sensitively on the black holes' exact positions that the uncertainty of quantum physics comes into play. Tiny quantum uncertainties in specifying the locations of objects can explode as the black holes' gyrations continue over tens of millions of years, astrophysicist Tjarda Boekholt and colleagues report in the April Monthly Notices of the Royal Astronomical Society. So the distant future of the black holes' orbits is impossible to foresee.

Such extreme sensitivity to initial conditions is known as chaos. The new study suggests, in the case of three black holes, "quantum mechanics imprints into the universe chaos at a fundamental level," says astrophysicist Nathan Leigh of Universidad de Concepcion in Chile, who was not involved with the research.

In chaotic systems, tiny changes can generate wildly different outcomes. The classic example is a butterfly flapping its wings, thereby altering weather patterns, possibly producing a distant tornado that otherwise wouldn't have formed (SN: 9/16/13). This chaos also shows up in the orbits of three black holes and other collections of three or more objects, making such orbits difficult to calculate, a conundrum known as the three-body problem.


To test whether the black holes' motions were predictable, Boekholt, of the University of Coimbra in Portugal, and colleagues checked if they could run computer simulations of the orbits both forward and backward and achieve the same result. Starting with a given set of locations for three initially stationary black holes, the researchers evolved those orbits forward in time to an end point tens of millions of years in the future. Then, they rewound the simulation, reversing the motions to see if the black holes ended up where they started from.

Computer simulations have a limited level of accuracy. In this case, for example, the locations of black holes were known only to a certain number of decimal places. That tiny imprecision can balloon over millions of years of the simulation.

According to quantum mechanics, it is impossible to determine the position of any object better than an utterly tiny distance called the Planck length, about 1.6 times 10-35 meters, or 16 billionths of a trillionth of a trillionth of a millimeter (SN: 4/8/11). Yet even with accuracy the size of the Planck length, the researchers found that about 5 percent of the time the three black holes wouldn't return to the same spots when the simulation was reversed. That means, even if you measured where the black holes were to the quantum mechanical limit, you couldn't rewind to find out where they had come from.


"These systems are fundamentally irreversible," says Boekholt. "You can't go forwards and backwards for these 5 percent of systems in nature. And that was quite a surprising result."

The result is theoretical and can't be applied to real black holes, says astrophysicist Nicholas Stone of the Hebrew University of Jerusalem. For example, measurement errors would swamp the importance of quantum physics. But that doesn't detract from the study's importance, he says: "It is still quite interesting from a conceptual perspective."







Debris Ring around a star






The top view, taken by NASA/ESA Hubble Space Telescope, is the first visible-light image of a dust ring around the nearby, bright young star Fomalhaut (HD 216956). The image offers the strongest evidence yet that an unruly planet may be tugging on the dusty belt. Part of the ring [at left] is outside the telescope's view. The ring is tilted obliquely to our line of sight.

The center of the ring is about 1.4 billion miles (15 astronomical units) away from the star. The dot near the ring's center marks the star's location. Astronomers believe that an unseen planet moving in an elliptical orbit is reshaping the ring.

The view at bottom points out important features in the image, such as the ring's inner and outer edges. Astronomers used the Advanced Camera for Surveys' (ACS) coronagraph aboard Hubble to block out the light from the bright star so they could see the faint ring. Despite the coronagraph, some light from the star is still visible in this image, as can be seen in the wagon wheel-like spokes that form an inner ring around Fomalhaut [labeled 'scattered light 'noise''].




Credit:
NASA/ESA and The Hubble Heritage Team (STScI/AURA)









Location of star HD 209458 (ground-based image)






The parent star of HD 209458b is called HD 209458. It is similar to our Sun and lies 150 light-years from Earth. It is visible with binoculars as a seventh magnitude star in the constellation of Pegasus. This is a 1.9 degree three colour composite from the Digitized Sky Survey. The blue plate (B) is shown in blue, the red plate (R) in green and the infrared plate (I) in red.




Credit:
NASA/ESA and The Hubble Heritage Team (STScI/AURA)