Connecting To The Server To Fetch The WebPage Elements!!....
MXPlank.com MXMail Submit Research Thesis Electronics - MicroControllers Contact us QuantumDDX.com




Search The Site







MXPlank News Letter - 2021-11-25







Hubble sees galaxies galore







Galaxies, galaxies everywhere - as far as the NASA/ESA Hubble Space Telescope can see. This view of nearly 10,000 galaxies is the deepest visible-light image of the cosmos. Called the Hubble Ultra Deep Field, this galaxy-studded view represents a "deep" core sample of the universe, cutting across billions of light-years.

The snapshot includes galaxies of various ages, sizes, shapes, and colours. The smallest, reddest galaxies, about 100, may be among the most distant known, existing when the universe was just 800 million years old. The nearest galaxies - the larger, brighter, well-defined spirals and ellipticals - thrived about 1 billion years ago, when the cosmos was 13 billion years old.

In vibrant contrast to the rich harvest of classic spiral and elliptical galaxies, there is a zoo of oddball galaxies littering the field. Some look like toothpicks; others like links on a bracelet. A few appear to be interacting. These oddball galaxies chronicle a period when the universe was younger and more chaotic. Order and structure were just beginning to emerge.

The Ultra Deep Field observations, taken by the Advanced Camera for Surveys, represent a narrow, deep view of the cosmos. Peering into the Ultra Deep Field is like looking through a 2.5 metre-long soda straw.

In ground-based photographs, the patch of sky in which the galaxies reside (just one-tenth the diameter of the full Moon) is largely empty. Located in the constellation Fornax, the region is so empty that only a handful of stars within the Milky Way galaxy can be seen in the image.

In this image, blue and green correspond to colours that can be seen by the human eye, such as hot, young, blue stars and the glow of Sun-like stars in the disks of galaxies. Red represents near-infrared light, which is invisible to the human eye, such as the red glow of dust-enshrouded galaxies.

The image required 800 exposures taken over the course of 400 Hubble orbits around Earth. The total amount of exposure time was 11.3 days, taken between Sept. 24, 2003 and Jan. 16, 2004.







Credit:
NASA, ESA, and S. Beckwith (STScI) and the HUDF Team









Young stars sculpt gas with powerful outflows






This Hubble Space Telescope view shows one of the most dynamic and intricately detailed star-forming regions in space, located 210,000 light-years away in the Small Magellanic Cloud (SMC), a satellite galaxy of our Milky Way. At the centre of the region is a brilliant star cluster called NGC 346. A dramatic structure of arched, ragged filaments with a distinct ridge surrounds the cluster.

A torrent of radiation from the hot stars in the cluster NGC 346, at the centre of this Hubble image, eats into denser areas around it, creating a fantasy sculpture of dust and gas. The dark, intricately beaded edge of the ridge, seen in silhouette, is particularly dramatic. It contains several small dust globules that point back towards the central cluster, like windsocks caught in a gale.




Credit:
NASA, ESA, M. Robberto ( Space Telescope Science Institute/ESA) and the Hubble Space Telescope Orion Treasury Project Team









Hubble image of variable star RS Puppis






This Hubble image shows RS Puppis, a type of variable star known as a Cepheid variable. As variable stars go, Cepheids have comparatively long periods — RS Puppis, for example, varies in brightness by almost a factor of five every 40 or so days.

RS Puppis is unusual; this variable star is shrouded by thick, dark clouds of dust enabling a phenomenon known as a light echo to be shown with stunning clarity.

These Hubble observations show the ethereal object embedded in its dusty environment, set against a dark sky filled with background galaxies.




Credit:
NASA/ESA and The Hubble Heritage Team (STScI/AURA)








Beta Pictoris - Star with Disk - Not Annotated






Detailed images of the nearby star Beta Pictoris, taken by NASA/ESA Hubble Space Telescope, confirm the existence of not one but two dust disks encircling the star. The images offer tantalizing new evidence for at least one Jupiter-size planet orbiting Beta Pictoris.

The finding ends a decade of scientific speculation that an odd warp in the young star's debris disk may actually be another inclined disk. The recent Hubble Advanced Camera for Surveys view - the best visible-light image of Beta Pictoris - clearly shows a distinct secondary disk that is tilted by about 4 degrees from the main disk. The secondary disk is visible out to roughly 24 billion miles (almost 40 billion kilometres) from the star, and probably extends even farther, said astronomers. This Hubble image of Beta Pictoris clearly shows a primary dust disk and a much fainter secondary dust disk. Astronomers used the Advanced Camera's coronagraph to block out the light from the bright star.




Credit:
NASA/ESA and The Hubble Heritage Team (STScI/AURA)