MXPlank shows the results of an epic physics experiment which confirms the reality of a space-time vortex around our planet.
Is Earth in a vortex of space-time?
A Stanford physics experiment called Gravity Probe B (GP-B) recently finished a year of gathering science data in Earth orbit. The results, which will take another year to analyze, should reveal the shape of space-time around Earth--and, possibly, the vortex.
Time and space, according to Einstein's theories of relativity, are woven together, forming a four-dimensional fabric called "space-time." The tremendous mass of Earth dimples this fabric, much like a heavy person sitting in the middle of a trampoline. Gravity, says Einstein, is simply the motion of objects following the curvaceous lines of the dimple.
If Earth were stationary, that would be the end of the story. But Earth is not stationary. Our planet spins, and the spin should twist the dimple, slightly, pulling it around into a 4-dimensional swirl. This is what GP-B went to space to check
The idea behind the experiment is simple:
Put a spinning gyroscope into orbit around the Earth, with the spin axis pointed toward some distant star as a fixed reference point. Free from external forces, the gyroscope's axis should continue pointing at the star--forever. But if space is twisted, the direction of the gyroscope's axis should drift over time. By noting this change in direction relative to the star, the twists of space-time could be measured.
In practice, the experiment is tremendously difficult.
The four gyroscopes in GP-B are the most perfect spheres ever made by humans. These ping pong-sized balls of fused quartz and silicon are 1.5 inches across and never vary from a perfect sphere by more than 40 atomic layers. If the gyroscopes weren't so spherical, their spin axes would wobble even without the effects of relativity.
According to calculations, the twisted space-time around Earth should cause the axes of the gyros to drift merely 0.041 arcseconds over a year. An arcsecond is 1/3600th of a degree. To measure this angle reasonably well, GP-B needed a fantastic precision of 0.0005 arcseconds. It's like measuring the thickness of a sheet of paper held edge-on 100 miles away.
GP-B researchers invented whole new technologies to make this possible. They developed a "drag free" satellite that could brush against the outer layers of Earth's atmosphere without disturbing the gyros. They figured out how to keep Earth's penetrating magnetic field out of the spacecraft. And they concocted a device to measure the spin of a gyro--without touching the gyro.
Pulling off the experiment was an exceptional challenge. A lot of time and money was on the line, but the GP-B scientists appear to have done it.
"There were not any major surprises" in the experiment's performance, says physics professor Francis Everitt, the Principal Investigator for GP-B at Stanford University. Now that data-taking is complete, he says the mood among the GP-B scientists is "a lot of enthusiasm, and a realization also that a lot of grinding hard work is ahead of us."
A careful, thorough analysis of the data is underway. The scientists will do it in three stages, Everitt explains. First, they will look at the data from each day of the year-long experiment, checking for irregularities. Next they'll break the data into roughly month-long chunks, and finally they'll look at the whole year. By doing it this way, the scientists should be able to find any problems that a more simple analysis might miss.
Eventually scientists around the world will scrutinize the data. Says Everitt, "we want our sternest critics to be us."
The stakes are high. If they detect the vortex, precisely as expected, it simply means that Einstein was right, again. But what if they don't? There might be a flaw in Einstein's theory, a tiny discrepancy that heralds a revolution in physics.
First, though, there are a lot of data to analyze. Stay tuned.
Enjoying The Geminids From Above And Below
The Geminids meteor shower will be viewed from above by the Meteor camera on the International Space Station, as well as from below by sky watchers on Earth
On the night of December 13, into the morning of December 14, 2018, tune into the night sky for a dazzling display of fireballs. Thanks to the International Space Station, this sky show - the Geminids meteor shower -- will be viewed from both above and below
Sky watchers on the Earth will be sprawled flat on their backs, scanning the skies for fleeting streaks of light or meteors from small particles or meteoroids burning up as they plunge into the atmosphere. While most of those viewers won't be pondering what the shooting stars are made of, astronomers and planetary scientists will be. The Meteor camera on the space station will provide clues.
Meteor records HD video from inside the Window Observational Research Facility (WORF) - looking through thehighest optical-quality window ever installed on a human space vehicle.
This camera helps scientists identify and monitor the activity of meteors, from bolides, extremely bright meteors that typically explode in the atmosphere, to much fainter ones not visible to the naked eye. The camera is equipped with a diffraction grating, an optical component that allows incoming light to be split into selected visible wavelengths of light that are signatures of various elements (Iron, Sodium, Calcium, and Magnesium). By measuring a spectrum or chemical fingerprint from the meteor, the presence of these elements is revealed.
Meteor Science Principal Investigator Tomoko Arai of the Chiba Institute of Technology in Japan says, Our observations focus on annual meteor showers, such as Geminids and Perseids, because their meteoroids originated from known comets or asteroids, so-called meteor showers' parent bodies. The spectral information will tell us the chemical makeup of meteoroids and of their parent bodies. This can help us understand their origin and evolution.
The instrument also helps improve estimates of how much material actually enters Earth's atmosphere. Findings could help mission planners protect spacecraft and Earth from potential collisions with meteoroids.
So what parent body spawns the debris that results in the dazzling Geminids?
Many researchers hypothesize that they are related to a rocky asteroid known as 3200 Phaethon, which passes closer to the sun than any other named asteroid.Phaethon may be a rock-comet-a dormant comet that has accumulated a thick mantle of interplanetary dust grains that can slough off as the comet nears the sun. Phaethon may be an asteroid that was once rich in ice and organics like comets, originally located in the main asteroid belt, which has become active as its orbit has evolved closer to the Sun.
Another possible explanation for the Geminids source is as follows:
There is another object - Apollo asteroid 2005 UD - that seems to be dynamically related to Phaethon and has physical similarities.Some researchers believe that 2005 UD, 3200 Phaethon, and the massive amounts of debris that cause the Geminids are all products of a larger object that has broken apart.
Researchers continue to debate the cosmic drama underlying the Geminids.
Best viewing is Friday morning around 2 AM your local time, after moonset. In the suburbs you could see around 40-50 meteors per hour. Under ideal conditions you could see about 100 meteors per hour! Darker is always better when viewing meteor showers.
What Lies Inside The Jupiter
For four long centuries the gas giant's vast interior has remained hidden from view. JUNO probe, launched on August 5th, changed all that.
It's really hot inside Jupiter! No one knows exactly how hot, but scientists think it could be about 43,000°F (24,000°C) near Jupiter's center, or core.
Jupiter is made up almost entirely of hydrogen and helium. On the surface of Jupiter-and on Earth-those elements are gases. However inside Jupiter, hydrogen can be a liquid, or even a kind of metal.
These changes happen because of the tremendous temperatures and pressures found at the core.
What is pressure?
Have you ever gone swimming at the deep end of a pool? Did you notice that your ears started to hurt a little bit when you were under water? The deeper you dive, the more water there is on top of you. All of that water presses on your body-and that's pressure.
The same type of pressure happens in Jupiter's core. Under low pressure, particles of hydrogen and helium, called molecules, have lots of room to bounce around. This is when hydrogen and helium are gases.
However, the weight of all this hydrogen and helium is really heavy. This weight presses down toward the planet's core, creating high pressure. The molecules run out of room to bounce around, so instead, they slow down and crowd together. This creates a liquid.
How much pressure would you find at the center of Jupiter?
Imagine if you swam to the bottom of the Pacific Ocean. You would feel more than 16,000 pounds of force pressing down on every square inch of your body. That is approximately the weight of four cars!
The pressure at the center of Jupiter is much higher. At Jupiter's core, you would feel as much as 650 million pounds of pressure pressing down on every square inch of your body. That would be like having approximately 160,000 cars stacked up in every direction all over your body!
What lies at the very center of Jupiter?
At the moment, scientists aren't 100% sure. It may be that the planet has a solid core that is bigger than Earth. But some scientists think it could be more like a thick, boiling-hot soup.
JUNO mission is designed to find answers to such remaining questions about Jupiter. The spacecraft is orbiting the giant planet, swooping in for close-up looks to get more detailed information.
Juno has already made many new discoveries about Jupiter. Scientists hope that information from Juno will help us measure Jupiter's mass and figure out whether or not the giant planet's core is solid.
Spacecraft discovers thousands of doomed comets
The ESA/NASA Solar and Heliospheric Observatory has discovered more than 3000 doomed comets that have passed close to the sun.
The Solar and Heliospheric Observatory, better known as "SOHO", is a joint project of the European Space Agency, or ESA, and NASA. Orbiting the sun at 1.5 million km, or 932,000 miles from Earth, the distant observatory has just discovered its 3000th comet-more than any other spacecraft or astronomer. And, just about all of SOHO's comets have been destroyed.
"They just disintegrate every time we observe one," said Karl Battams, a solar scientist at the Naval Research Labs in Washington, D.C., who has been in charge of running the SOHO comet-sighting website since 2003. "SOHO sees comets that pass very close to the sun-and they just can't stand the intense sunlight."
The overwhelming majority of SOHO's comet discoveries belong to the Kreutz family. Kreutz sungrazers are fragments from the breakup of a single giant comet thousands of years ago. They get their name from 19th century German astronomer Heinrich Kreutz, who studied them in detail. On average, a new member of the Kreutz family is discovered every three days. Unfortunately for these small comets, their orbits swoop perilously close to the sun.
There's only one Kreutz comet that made it around the sun – Comet Lovejoy. And we are pretty confident it fell apart a couple of weeks afterwards
Although SOHO's comets are rapidly destroyed, they nevertheless have great scientific value. For instance, the comets' tails are buffeted and guided by the sun's magnetic fields. Watching how the tails bend and swing can tell researchers a great deal about the sun's magnetic field.
Prior to the launch of SOHO in 1995, only a dozen or so comets had ever even been discovered from space, while some 900 had been discovered from the ground since 1761. SOHO has turned the tables on these figures, making itself the greatest comet hunter of all time.
But SOHO hasn't reached this lofty perch alone. The spacecraft relies on people who sift through its data. Anyone can help because SOHO's images are freely available online in real time. Many volunteer amateur astronomers scan the data on a daily basis for signs of a new comet. The result: 95% of SOHO comets have been found by citizen scientists.
Whenever someone spots a comet, they report it to Battams. He goes over the imagery to confirm the sighting and then submits it to the Central Bureau for Astronomical Telegrams, which gives it an official name.
And the name is…you guessed it. "SOHO."
While comets spotted from the ground are named after the person who first discovered them, comets first observed by a space-based telescope are named after the spacecraft. The 3000th comet discovered was named "SOHO-3000."
Naturally, it has already been destroyed. SOHO doesn't mind though. The Greatest Comet Hunter Ever has already moved on to the next sungrazer.