Connecting To The Server To Fetch The WebPage Elements!!....
MXPlank.com MXMail Submit Research Thesis Electronics - MicroControllers Contact us QuantumDDX.com




Search The Site






MXPlank Science-Casts News Letter - 2021-01-05




Astrophysics Big Questions About Small Worlds


Small Worlds hold keys to questions about our solar system and the origin of life on Earth.


Scientists who study the solar system tend to ask big questions: How was our solar system formed? Where did the building blocks of life come from? What hazards from above threaten life on our planet? To find answers, theyre looking more and more at small worlds.

What are small worlds? Asteroids for sure. Comets too. Also the many small satellites or moons that orbit large planets as well as the icy worlds at the distance of Pluto and beyond. Some have combined, only to be broken apart later by collisions and tidal forces. Others have gone largely untouched since the dawn of the solar system. Some carry water and organic compounds, others are almost entirely composed of metal. And all hold keys to questions about our solar system and the origin of life on Earth.

Water is key to life as we know it. Learning where water is found in our solar system provides pieces to the puzzle of understanding the origins of life. New Horizons recently surprised us by discovering a large abundance of water ice at Pluto. More surprises are in store, as New Horizons transmits the data from its January 1, 2019 flyby of the Kuiper Belt object 2014 MU69 back to Earth!

Small worlds can be found in a wide range of locations across the solar system, from the inner solar system all the way out to the Kuiper Belt. When they are studied together, these remnants of the early solar system can help tell the story of solar system formation.

Dawn recently completed a mission to the Main Asteroid Belt, visiting the dwarf planet Ceres and the Belts largest asteroid, Vesta. OSIRIS-REx has arrived at Bennu, a near-Earth asteroid about 1650 feet (500 m) across, and will return to Earth in 2023 with a sample so scientists can begin to understand Bennus origin and history. The Lucy mission will be traveling to six trojan asteroids, trapped in the orbit of Jupiter. These objects are the only remaining unexplored population of small worlds in the solar system. The Psyche mission will be visiting a metal object in the Main Asteroid Belt that could be the remnant core of a proto-planet similar in size to Vesta!

While those missions travel to their individual targets, NEOWISE, a repurposed space telescope in low-Earth orbit, has made infrared measurements of hundreds of near-Earth objects and tens of thousands of other small worlds in the solar system. These diverse worlds offer insights into how our solar system formed and evolved.

This is not your grandparents solar system and things are not as orderly as we once believed.

The data weve gleaned from these objects so far have changed the way we think about the origin of the planets. For example, the small worlds in the Kuiper Belt are leading us to think that Uranus and Neptune formed much closer to the Sun than where they reside now, then gradually moved to their current orbits.

The biggest misperception about small worlds? Their distance to each other. In the movies, they always show an asteroid belt with millions of rocks almost touching each other, whereas in reality there is much more empty space. You have to travel hundreds of thousands of miles to get from one asteroid to another.

Yet scientists are also looking closer to home. Determining the orbits and physical characteristics of objects that might impact Earth is critical to understanding the consequences of any such impact; and responding to an actual impact threat, if one is ever discovered. knows of no asteroid or comet currently on a collision course with Earth. But, to prepare for that scenario is developing the Double Asteroid Redirection Test or DART mission as the first demonstration of the kinetic impact technique that could be used to change the motion of a hazardous asteroid away from Earth.










The Sounds Of The InterStellar Space


As Voyager 1 recedes from the solar system, researchers are listening for interstellar music (plasma waves) to learn more about conditions outside the heliosphere.


Scifi movies are sometimes criticized when explosions in the void make noise. As the old saying goes, in space, no one can hear you scream. Without air there is no sound.

But if that's true, the sounds of interstellar space were heard by astronomers?

It turns out that space can make music - if you know how to listen.

Some plasma wave data was played for astronomers and The sounds were solid evidence that Voyager 1 had left the heliosphere.

The heliosphere is a vast bubble of magnetism that surrounds the sun and planets. It is, essentially, the sun's magnetic field inflated to enormous proportions by the solar wind. Inside the heliosphere is home. Outside lies interstellar space, the realm of the stars

For decades, researchers have been on the edge of their seats, waiting for the Voyager probes to leave. Ironically, it took almost a year to realize the breakthrough had occurred. The reason is due to the slow cadence of transmissions from the distant spacecraft. Data stored on old-fashioned tape recorders are played back at three to six month intervals. Then it takes more time to process the readings.

The thrill of discovery when some months-old data from the Plasma Wave Instrument reached his desk in the summer of 2013. The distant tones were conclusive: Voyager 1 had made the crossing.

Strictly speaking, the plasma wave instrument does not detect sound. Instead it senses waves of electrons in the ionized gas or plasma that Voyager travels through. No human ear could hear these plasma waves. Nevertheless, because they occur at audio frequencies, between a few hundred and a few thousand hertz, we can play the data through a loudspeaker and listen. The pitch and frequency tell us about the density of gas surrounding the spacecraft.

When Voyager 1 was inside the heliosphere, the tones were low, around 300 Hz, typical of plasma waves coursing through the rarified solar wind. Outside, the frequency jumped to a higher pitch, between 2 and 3 kHz, corresponding to denser gas in the interstellar medium.

So far, Voyager 1 has recorded two outbursts of interstellar plasma music--one in Oct-Nov. 2012 and a second in April-May 2013. Both were excited by bursts of solar activity.

We need solar events to trigger plasma oscillations.

The key players are CMEs, hot clouds of gas that blast into space when solar magnetic fields erupt. A typical CME takes 2 or 3 days to reach Earth, and a full year or more to reach Voyager. When a CME passes through the plasma, it excites oscillations akin to fingers strumming the strings on a guitar. Voyager's Plasma Wave Instrument listens - and learns.

We're in a totally unexplored region of space and expect some surprises out there.

In particular, plasma waves are not excited by solar storms. Shock fronts from outside the solar system could be rippling through the interstellar medium. If so, they would excite new plasma waves that Voyager 1 will encounter as it plunges ever deeper into the realm of the stars.

The next sounds from out there could be surprising indeed.










Earth Day Meteor Shower


At the end of a day devoted to Earth, people can look to the heavens for a beautiful shower of Lyrid meteors.


On April 22nd 2015, millions of people around the world will gather together at festivals and other events to celebrate our beautiful blue planet. It's Earth Day, an occasion to pause, reflect, and talk about how to sustain a clean, healthy environment on Earth.

This year, Earth Day will end with a meteor shower.

On April 22-23 ,2015, Earth will pass through a stream of debris from Comet Thatcher, source of the annual Lyrid meteor shower.

As Earth crosses the debris zone, flakes of comet dust, most no bigger than grains of sand, strike Earth's atmosphere traveling 49 km/s (110,000 mph) and disintegrate as streaks of light. Typical Lyrids are about as bright as the stars of the Big Dipper

As meteor showers go, the Lyrids are relatively mild. Most years in April there are no more than 10 to 20 Lyrid meteors per hour. But sometimes, when Earth glides through an unusually dense clump of debris from Comet Thatcher, the rate increases, resulting in what is known as a meteor outburst. Sky watchers in 1982, for instance, counted 90 Lyrids per hour. An even more impressive outburst was documented in 1803 by a journalist in Richmond, Virginia, who wrote:

"Shooting stars [were] observed on Wednesday morning last at Richmond and its vicinity, in a manner that alarmed many, and astonished every person that beheld it. From one until three in the morning, those starry meteors seemed to fall from every point in the heavens, in such numbers as to resemble a shower of sky rockets..."

Another published report from the 19th century lists an observer as having "counted 167 meteors in about 15 minutes, and could not then number them all.

No such outburst is predicted for 2015-but then again, no outbursts were predicted on those previous occasions either. If you're up late, take a look.

The best time to catch the shower is between about 11 pm on April 22nd and sunrise on April 23rd, in any timezone in the northern hemisphere.

Observing tips: Dress warmly. Bring a reclining chair, or spread a thick blanket over a flat spot of ground. Lie down and look up. Meteors can appear in any part of the sky, although their trails will tend to point back toward the constellation Lyra, from which the meteors get their name. The hours before dawn are best, because that is when Lyra is highest in the sky.

Sometimes, bright moonlight can spoil a meteor shower. That will not be the case on April 22nd. The Moon is just a slender crescent, and it sets shortly after sunset, so lunar glare will not interfere with the Lyrids. If you can, get away from city lights for the darkest possible sky and the best possible show.

Enjoy Earth Day. And then enjoy Earth Night even more.










What Lies Inside The Jupiter


For four long centuries the gas giant's vast interior has remained hidden from view. JUNO probe, launched on August 5th, changed all that.
It's really hot inside Jupiter! No one knows exactly how hot, but scientists think it could be about 43,000°F (24,000°C) near Jupiter's center, or core. Jupiter is made up almost entirely of hydrogen and helium. On the surface of Jupiter-and on Earth-those elements are gases. However inside Jupiter, hydrogen can be a liquid, or even a kind of metal. These changes happen because of the tremendous temperatures and pressures found at the core.

What is pressure?

Have you ever gone swimming at the deep end of a pool? Did you notice that your ears started to hurt a little bit when you were under water? The deeper you dive, the more water there is on top of you. All of that water presses on your body-and that's pressure. The same type of pressure happens in Jupiter's core. Under low pressure, particles of hydrogen and helium, called molecules, have lots of room to bounce around. This is when hydrogen and helium are gases. However, the weight of all this hydrogen and helium is really heavy. This weight presses down toward the planet's core, creating high pressure. The molecules run out of room to bounce around, so instead, they slow down and crowd together. This creates a liquid.

How much pressure would you find at the center of Jupiter?

Imagine if you swam to the bottom of the Pacific Ocean. You would feel more than 16,000 pounds of force pressing down on every square inch of your body. That is approximately the weight of four cars! The pressure at the center of Jupiter is much higher. At Jupiter's core, you would feel as much as 650 million pounds of pressure pressing down on every square inch of your body. That would be like having approximately 160,000 cars stacked up in every direction all over your body!

What lies at the very center of Jupiter?

At the moment, scientists aren't 100% sure. It may be that the planet has a solid core that is bigger than Earth. But some scientists think it could be more like a thick, boiling-hot soup. JUNO mission is designed to find answers to such remaining questions about Jupiter. The spacecraft is orbiting the giant planet, swooping in for close-up looks to get more detailed information. Juno has already made many new discoveries about Jupiter. Scientists hope that information from Juno will help us measure Jupiter's mass and figure out whether or not the giant planet's core is solid.