When the Space Age began, explorers were eager to visit the planets of the solar system. As the years have passed, however, astronomers have realized that the moons of the solar system may be even more interesting.
Planets and Moons - How Many Moons Does Each Planet Have?
Mercury - 0
Venus - 0
Earth - 1
Mars - 2
Jupiter - 79 (53 confirmed, 26 provisional)
Saturn - 62 (53 confirmed, 9 provisional)
Uranus - 27
Neptune - 14
Moons - also called natural satellites - come in many shapes, sizes and types. They are generally solid bodies, and few have atmospheres. Most planetary moons probably formed from the discs of gas and dust circulating around planets in the early solar system.
There are hundreds of moons in our solar system - even a few asteroids have been found to have small companion moons. Moons that begin with a letter and a year are considered provisional moons. They will be given a proper name when their discoveries are confirmed by additional observations.
Of the terrestrial (rocky) planets of the inner solar system, neither Mercury nor Venus have any moons at all, Earth has one and Mars has its two small moons. In the outer solar system, the gas giants Jupiter and Saturn and the ice giants Uranus and Neptune have dozens of moons. As these planets grew in the early solar system, they were able to capture smaller objects with their large gravitational fields
How Moons Get Their Names
Most moons in our solar system are named for mythological characters from a wide variety of cultures. The newest moons discovered at Saturn, for example, are named for Norse gods such as Bergelmir, a giant.
Uranus is the exception. Uranus' moons are named for characters in William Shakespeare's plays so you'll find Ophelia and Puck in orbit. Other Uranian moon names were chosen from Alexander Pope's poetry (Belinda and Ariel).
Moons are given provisional designations such as S/2009 S1, the first satellite discovered at Saturn in 2009. The International Astronomical Union approves an official name when the discovery is confirmed.
Moons of the Inner Solar System
Earth's Moon probably formed when a large body about the size of Mars collided with Earth, ejecting a lot of material from our planet into orbit. Debris from the early Earth and the impacting body accumulated to form the Moon approximately 4.5 billion years ago (the age of the oldest collected lunar rocks). Twelve American astronauts landed on the Moon during NASA's Apollo program from 1969 to 1972, studying the Moon and bringing back rock samples.
Usually the term moon brings to mind a spherical object, like Earth's Moon. The two moons of Mars, Phobos and Deimos, are different. While both have nearly circular orbits and travel close to the plane of the planet's equator, they are lumpy and dark. Phobos is slowly drawing closer to Mars and could crash into the planet in 40 or 50 million years. Or the planet's gravity might break Phobos apart, creating a thin ring around Mars.
Moons of the Giant Planets
Jupiter's menagerie of moons includes the largest in the solar system (Ganymede), an ocean moon (Europa) and a volcanic moon (Io). Many of Jupiter's outer moons have highly elliptical orbits and orbit backwards (opposite to the spin of the planet). Saturn, Uranus and Neptune also have some irregular moons, which orbit far from their respective planets.
Saturn has two ocean moons-Enceladus and Titan. Both have subsurface oceans and Titan also has surface seas of lakes of ethane and methane. The chunks of ice and rock in Saturn's rings (and the particles in the rings of the other outer planets) are not considered moons, yet embedded in Saturn's rings are distinct moons or moonlets. These shepherd moons help keep the rings in line. Titan, the second largest in the solar system, is the only moon with a thick atmosphere.
In the realm of the ice giants, Uranus's inner moons appear to be about half water ice and half rock. Miranda is the most unusual; its chopped-up appearance shows the scars of impacts of large rocky bodies.
Neptune's moon Triton is as big as Pluto and orbits backwards compared with Neptune's direction of rotation.
Moons of Dwarf Planets
Pluto's large moon Charon is about half the size of Pluto. Like Earth's Moon, Charon may have formed from debris resulting from an early collision of an impactor with Pluto. Scientists using the Hubble Space Telescope to study Pluto found four more small moons.
Eris, another dwarf planet even more distant than Pluto, has a small moon of its own, named Dysnomia. Haumea, another dwarf planet, has two satellites, Hi'iaka and Namaka. Ceres, the closest dwarf planet to the Sun, has no moons.
More Moons
Scientists weren't sure if asteroids could hold moons in their orbits until the Galileo spacecraft flew past asteroid Ida in 1993. Images revealed a tiny moon, later named Dactyl.
Bright Explosion on the Moon
Astrophysics researchers who monitor the Moon for meteoroid impacts have detected the brightest explosion in the history of their program.
For the past 8 years, astronomers have been monitoring the Moon for signs of explosions caused by meteoroids hitting the lunar surface. Lunar meteor showers have turned out to be more common than anyone expected, with hundreds of detectable impacts occurring every year.
They've just seen the biggest explosion in the history of the program.
On March 17, 2013, an object about the size of a small boulder hit the lunar surface in Mare Imbrium. It exploded in a flash nearly 10 times as bright as anything we've ever seen before.
Anyone looking at the Moon at the moment of impact could have seen the explosion--no telescope required. For about one second, the impact site was glowing like a 4th magnitude star.
Ron Suggs, an analyst at the Marshall Space Flight Center, was the first to notice the impact in a digital video recorded by one of the monitoring program's 14-inch telescopes. It jumped right out at me, it was so bright, he recalls.
The 40 kg meteoroid measuring 0.3 to 0.4 meters wide hit the Moon traveling 56,000 mph. The resulting explosion1 packed as much punch as 5 tons of TNT.
The lunar impact might have been part of a much larger event.
On the night of March 17, University of Western Ontario all-sky cameras picked up an unusual number of deep-penetrating meteors right here on Earth. These fireballs were traveling along nearly identical orbits between Earth and the asteroid belt.
This means Earth and the Moon were pelted by meteoroids at about the same time.
"My working hypothesis is that the two events are related, and that this constitutes a short duration cluster of material encountered by the Earth-Moon system.
One of the goals of the lunar monitoring program is to identify new streams of space debris that pose a potential threat to the Earth-Moon system. The March 17th event seems to be a good candidate.
Controllers of Lunar Reconnaissance Orbiter have been notified of the strike. The crater could be as wide as 20 meters, which would make it an easy target for LRO the next time the spacecraft passes over the impact site. Comparing the size of the crater to the brightness of the flash would give researchers a valuable ground truth measurement to validate lunar impact models.
Unlike Earth, which has an atmosphere to protect it, the Moon is airless and exposed. Lunar meteors crash into the ground with fair frequency. Since the monitoring program began in 2005, astronomers associated with lunar impact has detected more than 300 strikes, most orders of magnitude fainter than the March 17th event. Statistically speaking, more than half of all lunar meteors come from known meteoroid streams such as the Perseids and Leonids. The rest are sporadic meteors--random bits of comet and asteroid debris of unknown parentage.
U.S. Space Exploration Policy eventually calls for extended astronaut stays on the lunar surface. Identifying the sources of lunar meteors and measuring their impact rates gives future lunar explorers an idea of what to expect. Is it safe to go on a moonwalk, or not? The middle of March might be a good time to stay inside.
We'll be keeping an eye out for signs of a repeat performance next year when the Earth-Moon system passes through the same region of space. "Meanwhile, our analysis of the March 17th event continues."
The Moon has no oxygen atmosphere, so how can something explode? Lunar meteors don't require oxygen or combustion to make themselves visible. They hit the ground with so much kinetic energy that even a pebble can make a crater several feet wide. The flash of light comes not from combustion but rather from the thermal glow of molten rock and hot vapors at the impact site.
What Lies Inside The Jupiter
For four long centuries the gas giant's vast interior has remained hidden from view. JUNO probe, launched on August 5th, changed all that.
It's really hot inside Jupiter! No one knows exactly how hot, but scientists think it could be about 43,000°F (24,000°C) near Jupiter's center, or core.
Jupiter is made up almost entirely of hydrogen and helium. On the surface of Jupiter-and on Earth-those elements are gases. However inside Jupiter, hydrogen can be a liquid, or even a kind of metal.
These changes happen because of the tremendous temperatures and pressures found at the core.
What is pressure?
Have you ever gone swimming at the deep end of a pool? Did you notice that your ears started to hurt a little bit when you were under water? The deeper you dive, the more water there is on top of you. All of that water presses on your body-and that's pressure.
The same type of pressure happens in Jupiter's core. Under low pressure, particles of hydrogen and helium, called molecules, have lots of room to bounce around. This is when hydrogen and helium are gases.
However, the weight of all this hydrogen and helium is really heavy. This weight presses down toward the planet's core, creating high pressure. The molecules run out of room to bounce around, so instead, they slow down and crowd together. This creates a liquid.
How much pressure would you find at the center of Jupiter?
Imagine if you swam to the bottom of the Pacific Ocean. You would feel more than 16,000 pounds of force pressing down on every square inch of your body. That is approximately the weight of four cars!
The pressure at the center of Jupiter is much higher. At Jupiter's core, you would feel as much as 650 million pounds of pressure pressing down on every square inch of your body. That would be like having approximately 160,000 cars stacked up in every direction all over your body!
What lies at the very center of Jupiter?
At the moment, scientists aren't 100% sure. It may be that the planet has a solid core that is bigger than Earth. But some scientists think it could be more like a thick, boiling-hot soup.
JUNO mission is designed to find answers to such remaining questions about Jupiter. The spacecraft is orbiting the giant planet, swooping in for close-up looks to get more detailed information.
Juno has already made many new discoveries about Jupiter. Scientists hope that information from Juno will help us measure Jupiter's mass and figure out whether or not the giant planet's core is solid.
Spacecraft discovers thousands of doomed comets
The ESA/NASA Solar and Heliospheric Observatory has discovered more than 3000 doomed comets that have passed close to the sun.
The Solar and Heliospheric Observatory, better known as "SOHO", is a joint project of the European Space Agency, or ESA, and NASA. Orbiting the sun at 1.5 million km, or 932,000 miles from Earth, the distant observatory has just discovered its 3000th comet-more than any other spacecraft or astronomer. And, just about all of SOHO's comets have been destroyed.
"They just disintegrate every time we observe one," said Karl Battams, a solar scientist at the Naval Research Labs in Washington, D.C., who has been in charge of running the SOHO comet-sighting website since 2003. "SOHO sees comets that pass very close to the sun-and they just can't stand the intense sunlight."
The overwhelming majority of SOHO's comet discoveries belong to the Kreutz family. Kreutz sungrazers are fragments from the breakup of a single giant comet thousands of years ago. They get their name from 19th century German astronomer Heinrich Kreutz, who studied them in detail. On average, a new member of the Kreutz family is discovered every three days. Unfortunately for these small comets, their orbits swoop perilously close to the sun.
There's only one Kreutz comet that made it around the sun – Comet Lovejoy. And we are pretty confident it fell apart a couple of weeks afterwards
Although SOHO's comets are rapidly destroyed, they nevertheless have great scientific value. For instance, the comets' tails are buffeted and guided by the sun's magnetic fields. Watching how the tails bend and swing can tell researchers a great deal about the sun's magnetic field.
Prior to the launch of SOHO in 1995, only a dozen or so comets had ever even been discovered from space, while some 900 had been discovered from the ground since 1761. SOHO has turned the tables on these figures, making itself the greatest comet hunter of all time.
But SOHO hasn't reached this lofty perch alone. The spacecraft relies on people who sift through its data. Anyone can help because SOHO's images are freely available online in real time. Many volunteer amateur astronomers scan the data on a daily basis for signs of a new comet. The result: 95% of SOHO comets have been found by citizen scientists.
Whenever someone spots a comet, they report it to Battams. He goes over the imagery to confirm the sighting and then submits it to the Central Bureau for Astronomical Telegrams, which gives it an official name.
And the name is…you guessed it. "SOHO."
While comets spotted from the ground are named after the person who first discovered them, comets first observed by a space-based telescope are named after the spacecraft. The 3000th comet discovered was named "SOHO-3000."
Naturally, it has already been destroyed. SOHO doesn't mind though. The Greatest Comet Hunter Ever has already moved on to the next sungrazer.