Connecting To The Server To Fetch The WebPage Elements!!....
MXPlank.com MXMail Submit Research Thesis Electronics - MicroControllers Contact us QuantumDDX.com




Search The Site






MXPlank Science-Casts News Letter - 2021-02-01




What Lies Inside The Jupiter


For four long centuries the gas giant's vast interior has remained hidden from view. JUNO probe, launched on August 5th, changed all that.
It's really hot inside Jupiter! No one knows exactly how hot, but scientists think it could be about 43,000°F (24,000°C) near Jupiter's center, or core. Jupiter is made up almost entirely of hydrogen and helium. On the surface of Jupiter-and on Earth-those elements are gases. However inside Jupiter, hydrogen can be a liquid, or even a kind of metal. These changes happen because of the tremendous temperatures and pressures found at the core.

What is pressure?

Have you ever gone swimming at the deep end of a pool? Did you notice that your ears started to hurt a little bit when you were under water? The deeper you dive, the more water there is on top of you. All of that water presses on your body-and that's pressure. The same type of pressure happens in Jupiter's core. Under low pressure, particles of hydrogen and helium, called molecules, have lots of room to bounce around. This is when hydrogen and helium are gases. However, the weight of all this hydrogen and helium is really heavy. This weight presses down toward the planet's core, creating high pressure. The molecules run out of room to bounce around, so instead, they slow down and crowd together. This creates a liquid.

How much pressure would you find at the center of Jupiter?

Imagine if you swam to the bottom of the Pacific Ocean. You would feel more than 16,000 pounds of force pressing down on every square inch of your body. That is approximately the weight of four cars! The pressure at the center of Jupiter is much higher. At Jupiter's core, you would feel as much as 650 million pounds of pressure pressing down on every square inch of your body. That would be like having approximately 160,000 cars stacked up in every direction all over your body!

What lies at the very center of Jupiter?

At the moment, scientists aren't 100% sure. It may be that the planet has a solid core that is bigger than Earth. But some scientists think it could be more like a thick, boiling-hot soup. JUNO mission is designed to find answers to such remaining questions about Jupiter. The spacecraft is orbiting the giant planet, swooping in for close-up looks to get more detailed information. Juno has already made many new discoveries about Jupiter. Scientists hope that information from Juno will help us measure Jupiter's mass and figure out whether or not the giant planet's core is solid.








Worlds Within Worlds


Astronomers have discovered an immense cloud of hydrogen evaporating from a Neptune-sized planet named GJ 436b. The planet's atmosphere is evaporating because of extreme irradiation from its parent star

Astronomers using Hubble Space Telescope have discovered an immense cloud of hydrogen evaporating from a Neptune-sized planet named GJ 436b. The planet's atmosphere is evaporating because of extreme irradiation from its parent star.

About 30 light years away, a Neptune-sized planetis having some of its layers peeled back.

Astronomers using 's Hubble Space Telescope have discovered an immense cloud of hydrogen evaporating from a Neptune-sized planet named GJ 436b.

This cloud is spectacular. The research team has nicknamed it The 'Behemoth.'

The planet's atmosphere is evaporating because of extreme irradiation from its parent star-a process that might have been even more intense in the past.

The parent star, which is a faint red dwarf, was once more active. This means that the planet's atmosphere evaporated faster during its first billion years of existence. Overall, we estimate that the planet may have lost up to 10 percent of its atmosphere.

GJ 436b is considered to be a Warm Neptune because of its size and because it is much closer to its parent star than Neptune is to our own sun. Orbiting at a distance of less than 3 million miles, It whips around the central red dwarf in just 2.6 Earth days. For comparison, the Earth is 93 million miles from the sun and orbits it every 365.24 days.

Systems like GJ 436b could explain the existence of so-called Hot Super-Earths.

Hot Super-Earths are larger, hotter versions of our own planet. Space telescopes such as 's Kepler and the French led CoRoT have discovered hundredsof them orbiting distant stars. The existence of The Behemoth suggests that Hot Super-Earths could be the remnants of Warm Neptunes that completely lost their gaseous atmospheres to evaporation.

Finding a cloud around GJ 436b required Hubble's ultraviolet vision. Earth's atmosphere blocks most ultraviolet light so only a space telescope like Hubble could make the crucial observations.

You would not see The Behemoth in visible wavelengths because it is optically transparent. On the other hand, it is opaque to UV rays. So when you turn the ultraviolet eye of Hubble onto the system, it's really kind of a transformation because the planet turns into a monstrous thing.

The ultraviolet technique could be a game-changer in exoplanet studies, he adds. Ehrenreich expects that astronomers will find thousands of Warm Neptunes and Super-Earths in the years ahead. Astronomers will want to examine them for evidence of evaporation. Moreover, the ultraviolet technique might be able to spot the signature of oceans evaporating on Earth-like planets, shedding new light on worlds akin to our own.

Maybe you can't judge a book by its cover, but you can judge a planet by its Behemoth.








Spacecraft discovers thousands of doomed comets


The ESA/NASA Solar and Heliospheric Observatory has discovered more than 3000 doomed comets that have passed close to the sun.

The Solar and Heliospheric Observatory, better known as "SOHO", is a joint project of the European Space Agency, or ESA, and NASA. Orbiting the sun at 1.5 million km, or 932,000 miles from Earth, the distant observatory has just discovered its 3000th comet-more than any other spacecraft or astronomer. And, just about all of SOHO's comets have been destroyed.

"They just disintegrate every time we observe one," said Karl Battams, a solar scientist at the Naval Research Labs in Washington, D.C., who has been in charge of running the SOHO comet-sighting website since 2003. "SOHO sees comets that pass very close to the sun-and they just can't stand the intense sunlight."

The overwhelming majority of SOHO's comet discoveries belong to the Kreutz family. Kreutz sungrazers are fragments from the breakup of a single giant comet thousands of years ago. They get their name from 19th century German astronomer Heinrich Kreutz, who studied them in detail. On average, a new member of the Kreutz family is discovered every three days. Unfortunately for these small comets, their orbits swoop perilously close to the sun.

There's only one Kreutz comet that made it around the sun – Comet Lovejoy. And we are pretty confident it fell apart a couple of weeks afterwards

Although SOHO's comets are rapidly destroyed, they nevertheless have great scientific value. For instance, the comets' tails are buffeted and guided by the sun's magnetic fields. Watching how the tails bend and swing can tell researchers a great deal about the sun's magnetic field.

Prior to the launch of SOHO in 1995, only a dozen or so comets had ever even been discovered from space, while some 900 had been discovered from the ground since 1761. SOHO has turned the tables on these figures, making itself the greatest comet hunter of all time.

But SOHO hasn't reached this lofty perch alone. The spacecraft relies on people who sift through its data. Anyone can help because SOHO's images are freely available online in real time. Many volunteer amateur astronomers scan the data on a daily basis for signs of a new comet. The result: 95% of SOHO comets have been found by citizen scientists.

Whenever someone spots a comet, they report it to Battams. He goes over the imagery to confirm the sighting and then submits it to the Central Bureau for Astronomical Telegrams, which gives it an official name.

And the name is…you guessed it. "SOHO."

While comets spotted from the ground are named after the person who first discovered them, comets first observed by a space-based telescope are named after the spacecraft. The 3000th comet discovered was named "SOHO-3000."

Naturally, it has already been destroyed. SOHO doesn't mind though. The Greatest Comet Hunter Ever has already moved on to the next sungrazer.

"SOHO-4000," anyone?










Elucidating The Black Holes


"Black holes" is one of the most highly searched terms about our universe. There's a fascination with the idea of a region of space having a gravitational pull so strong, nothing can escape its deadly grasp, not even a sliver of light. Well, not quite. In fact, much of what we think we know about black holes turn out to be myths.

Myth 1 - All black holes are black. As the photograph below from the Event Horizon telescope demonstrated, light can be detected near a black hole's event horizon. This is the boundary between normal space and the space affected by the black hole's gravity, from which no escape is possible. Part of this light comes from the black hole's accretion disk, a flat, pancake like structure composed of dust, gas and other debris. Friction constantly moves the disk's material inward toward the event horizon. Light also comes from jet streams which propel matter outward along the disk's north and south poles.

Myth 2: All black holes are about the same size. Black holes actually come in several different sizes which are defined by their mass. Small black holes are usually the result of a relatively short and violent collapse of a star. Recent work suggests that Intermediate black holes are found in the nuclei of some active galaxies. Super massive black holes on the other hand, are found at the center of nearly every galaxy.

Dr. Dan Evans, an Astrophysicist at NASA Headquarters says, "There's a direct relationship between the beginning of super massive black holes and the beginning of their corresponding galaxy. This strongly suggests the two were born about the same time and slowly grew in size together over billions of years."

Myth 3: If you get within a few thousand miles of a black hole, its super gravity will pull you into its center. It turns out you can get surprisingly close to a black hole. If you approached a black hole with mass equal to our Sun's for example, you could get as close as tens of miles. So imagine if we replaced our sun with a black hole of the same mass. All of the planets would continue to revolve around it, at exactly the same speed and distance as they do now.

Myth 4: Once inside a black hole, nothing ever comes out. Nope. It turns out that radiation can escape from a black hole. One of Stephen Hawking's contributions was a theory that a black hole is not so dense in a quantum mechanical sense. The slow leak of what's now known as Hawking radiation would, over time, cause the black hole to simply evaporate.

The image from the Event Horizon telescope confirmed what Albert Einstein's general theory of relativity predicted over 100 years ago - that a black hole's form is that of a perfect circle. And as scientists learn even more about the properties of this gigantic cosmic mystery we call a black hole, they'll be able to puncture even more myths.