Connecting To The Server To Fetch The WebPage Elements!!....
MXPlank.com MXMail Submit Research Thesis Electronics - MicroControllers Contact us QuantumDDX.com




Search The Site






MXPlank Science-Casts News Letter - 2021-02-24




The Period Of The Solar Minimum


Intense solar activity such as sunspots and solar flares subsides during solar minimum, but that doesn't mean the sun becomes dull. Solar activity simply changes form
High up in the clear blue noontime sky, the sun appears to be much the same day-in, day-out, year after year.

But astronomers have long known that this is not true. The sun does change. Properly-filtered telescopes reveal a fiery disk often speckled with dark sunspots. Sunspots are strongly magnetized, and they crackle with solar flares-magnetic explosions that illuminate Earth with flashes of X-rays and extreme ultraviolet radiation. The sun is a seething mass of activity.

Until it's not. Every 11 years or so, sunspots fade away, bringing a period of relative calm.

This is called solar minimum and it's a regular part of the sunspot cycle.

The sun is heading toward solar minimum now. Sunspot counts were relatively high in 2014, and now they are sliding toward a low point expected in 2019-2020.

While intense activity such as sunspots and solar flares subside during solar minimum, that doesn't mean the sun becomes dull. Solar activity simply changes form.

For instance, during solar minimum we can see the development of long-lived coronal holes.

Coronal holes are vast regions in the sun's atmosphere where the sun's magnetic field opens up and allows streams of solar particles to escape the sun as the fast solar wind.

We see these holes throughout the solar cycle, but during solar minimum, they can last for a long time - six months or more. Streams of solar wind flowing from coronal holes can cause space weather effects near Earth when they hit Earth's magnetic field. These effects can include temporary disturbances of the Earth's magnetosphere, called geomagnetic storms, auroras, and disruptions to communications and navigation systems.

During solar minimum, the effects of Earth's upper atmosphere on satellites in low Earth orbit changes too.

Normally Earth's upper atmosphere is heated and puffed up by ultraviolet radiation from the sun. Satellites in low Earth orbit experience friction as they skim through the outskirts of our atmosphere. This friction creates drag, causing satellites to lose speed over time and eventually fall back to Earth. Drag is a good thing, for space junk; natural and man-made particles floating in orbit around Earth. Drag helps keep low Earth orbit clear of debris.

But during solar minimum, this natural heating mechanism subsides. Earth's upper atmosphere cools and, to some degree, can collapse. Without a normal amount of drag, space junk tends to hang around.

There are unique space weather effects that get stronger during solar minimum. For example, the number of galactic cosmic rays that reach Earth's upper atmosphere increases during solar minimum. Galactic cosmic rays are high energy particles accelerated toward the solar system by distant supernova explosions and other violent events in the galaxy.

During solar minimum, the sun's magnetic field weakens and provides less shielding from these cosmic rays. This can pose an increased threat to astronauts traveling through space.

Solar minimum brings about many changes to our sun, but less solar activity doesn't make the sun and our space environment any less interesting.

For more news about the changes ahead, stay tuned










Earth Day Meteor Shower


At the end of a day devoted to Earth, people can look to the heavens for a beautiful shower of Lyrid meteors.


On April 22nd 2015, millions of people around the world will gather together at festivals and other events to celebrate our beautiful blue planet. It's Earth Day, an occasion to pause, reflect, and talk about how to sustain a clean, healthy environment on Earth.

This year, Earth Day will end with a meteor shower.

On April 22-23 ,2015, Earth will pass through a stream of debris from Comet Thatcher, source of the annual Lyrid meteor shower.

As Earth crosses the debris zone, flakes of comet dust, most no bigger than grains of sand, strike Earth's atmosphere traveling 49 km/s (110,000 mph) and disintegrate as streaks of light. Typical Lyrids are about as bright as the stars of the Big Dipper

As meteor showers go, the Lyrids are relatively mild. Most years in April there are no more than 10 to 20 Lyrid meteors per hour. But sometimes, when Earth glides through an unusually dense clump of debris from Comet Thatcher, the rate increases, resulting in what is known as a meteor outburst. Sky watchers in 1982, for instance, counted 90 Lyrids per hour. An even more impressive outburst was documented in 1803 by a journalist in Richmond, Virginia, who wrote:

"Shooting stars [were] observed on Wednesday morning last at Richmond and its vicinity, in a manner that alarmed many, and astonished every person that beheld it. From one until three in the morning, those starry meteors seemed to fall from every point in the heavens, in such numbers as to resemble a shower of sky rockets..."

Another published report from the 19th century lists an observer as having "counted 167 meteors in about 15 minutes, and could not then number them all.

No such outburst is predicted for 2015-but then again, no outbursts were predicted on those previous occasions either. If you're up late, take a look.

The best time to catch the shower is between about 11 pm on April 22nd and sunrise on April 23rd, in any timezone in the northern hemisphere.

Observing tips: Dress warmly. Bring a reclining chair, or spread a thick blanket over a flat spot of ground. Lie down and look up. Meteors can appear in any part of the sky, although their trails will tend to point back toward the constellation Lyra, from which the meteors get their name. The hours before dawn are best, because that is when Lyra is highest in the sky.

Sometimes, bright moonlight can spoil a meteor shower. That will not be the case on April 22nd. The Moon is just a slender crescent, and it sets shortly after sunset, so lunar glare will not interfere with the Lyrids. If you can, get away from city lights for the darkest possible sky and the best possible show.

Enjoy Earth Day. And then enjoy Earth Night even more.










Amazing Moons


When the Space Age began, explorers were eager to visit the planets of the solar system. As the years have passed, however, astronomers have realized that the moons of the solar system may be even more interesting.

Planets and Moons - How Many Moons Does Each Planet Have?

  • Mercury - 0
  • Venus - 0
  • Earth - 1
  • Mars - 2
  • Jupiter - 79 (53 confirmed, 26 provisional)
  • Saturn - 62 (53 confirmed, 9 provisional)
  • Uranus - 27
  • Neptune - 14

Moons - also called natural satellites - come in many shapes, sizes and types. They are generally solid bodies, and few have atmospheres. Most planetary moons probably formed from the discs of gas and dust circulating around planets in the early solar system.

There are hundreds of moons in our solar system - even a few asteroids have been found to have small companion moons. Moons that begin with a letter and a year are considered provisional moons. They will be given a proper name when their discoveries are confirmed by additional observations.

Of the terrestrial (rocky) planets of the inner solar system, neither Mercury nor Venus have any moons at all, Earth has one and Mars has its two small moons. In the outer solar system, the gas giants Jupiter and Saturn and the ice giants Uranus and Neptune have dozens of moons. As these planets grew in the early solar system, they were able to capture smaller objects with their large gravitational fields

How Moons Get Their Names

Most moons in our solar system are named for mythological characters from a wide variety of cultures. The newest moons discovered at Saturn, for example, are named for Norse gods such as Bergelmir, a giant.

Uranus is the exception. Uranus' moons are named for characters in William Shakespeare's plays so you'll find Ophelia and Puck in orbit. Other Uranian moon names were chosen from Alexander Pope's poetry (Belinda and Ariel).

Moons are given provisional designations such as S/2009 S1, the first satellite discovered at Saturn in 2009. The International Astronomical Union approves an official name when the discovery is confirmed.

Moons of the Inner Solar System

Earth's Moon probably formed when a large body about the size of Mars collided with Earth, ejecting a lot of material from our planet into orbit. Debris from the early Earth and the impacting body accumulated to form the Moon approximately 4.5 billion years ago (the age of the oldest collected lunar rocks). Twelve American astronauts landed on the Moon during NASA's Apollo program from 1969 to 1972, studying the Moon and bringing back rock samples.

Usually the term moon brings to mind a spherical object, like Earth's Moon. The two moons of Mars, Phobos and Deimos, are different. While both have nearly circular orbits and travel close to the plane of the planet's equator, they are lumpy and dark. Phobos is slowly drawing closer to Mars and could crash into the planet in 40 or 50 million years. Or the planet's gravity might break Phobos apart, creating a thin ring around Mars.

Moons of the Giant Planets

Jupiter's menagerie of moons includes the largest in the solar system (Ganymede), an ocean moon (Europa) and a volcanic moon (Io). Many of Jupiter's outer moons have highly elliptical orbits and orbit backwards (opposite to the spin of the planet). Saturn, Uranus and Neptune also have some irregular moons, which orbit far from their respective planets.

Saturn has two ocean moons-Enceladus and Titan. Both have subsurface oceans and Titan also has surface seas of lakes of ethane and methane. The chunks of ice and rock in Saturn's rings (and the particles in the rings of the other outer planets) are not considered moons, yet embedded in Saturn's rings are distinct moons or moonlets. These shepherd moons help keep the rings in line. Titan, the second largest in the solar system, is the only moon with a thick atmosphere.

In the realm of the ice giants, Uranus's inner moons appear to be about half water ice and half rock. Miranda is the most unusual; its chopped-up appearance shows the scars of impacts of large rocky bodies.

Neptune's moon Triton is as big as Pluto and orbits backwards compared with Neptune's direction of rotation.

Moons of Dwarf Planets

Pluto's large moon Charon is about half the size of Pluto. Like Earth's Moon, Charon may have formed from debris resulting from an early collision of an impactor with Pluto. Scientists using the Hubble Space Telescope to study Pluto found four more small moons.

Eris, another dwarf planet even more distant than Pluto, has a small moon of its own, named Dysnomia. Haumea, another dwarf planet, has two satellites, Hi'iaka and Namaka. Ceres, the closest dwarf planet to the Sun, has no moons.

More Moons

Scientists weren't sure if asteroids could hold moons in their orbits until the Galileo spacecraft flew past asteroid Ida in 1993. Images revealed a tiny moon, later named Dactyl.










Sunset Solar Eclipse


On October 23rd, 2014, the Moon will pass in front of the sun, off-center, producing a partial solar eclipse visible in most of the United States


Sunsets are always pretty. One sunset this month could be out of this world. On Thursday, Oct. 23rd, the setting sun across eastern parts of the USA will be red, beautiful and - crescent-shaped.

It's a partial solar eclipse. In other words, the New Moon is going to 'take a bite' out of the sun.

A total eclipse is when the Moon passes directly in front of the sun, completely hiding the solar disk and allowing the sun's ghostly corona to spring into view. A partial eclipse is when the Moon passes in front of the sun, off-center, with a fraction of the bright disk remaining uncovered.

The partial eclipse of Oct. 23rd will be visible from all of the United States except Hawaii and New England. Coverage ranges from 12% in Florida to nearly 70% in Alaska. Weather permitting, almost everyone in North America will be able to see the crescent.

The eclipse will be especially beautiful in eastern parts of the USA, where the Moon and sun line up at the end of the day, transforming the usual sunset into something weird and wonderful.

Observers in the Central Time zone have the best view because the eclipse is in its maximum phase at sunset. They will see a fiery crescent sinking below the horizon, dimmed to human visibility by low-hanging clouds and mist.

Warning: Don't stare. Even at maximum eclipse, a sliver of sun peeking out from behind the Moon can still cause pain and eye damage. Direct viewing should only be attempted with the aid of a safe solar filter.

During the eclipse, don't forget to look at the ground. Beneath a leafy tree, you might be surprised to find hundreds of crescent-shaped sunbeams dappling the grass. Overlapping leaves create a myriad of natural little pinhole cameras, each one casting an image of the crescent-sun onto the ground beneath the canopy. When the eclipsed sun approaches the horizon, look for the same images cast on walls or fences behind the trees.

Here's another trick: Criss-cross your fingers waffle-style and let the sun shine through the matrix of holes. You can cast crescent suns on sidewalks, driveways, friends, cats and dogs-you name it. Unlike a total eclipse, which lasts no more than a few minutes while the sun and Moon are perfectly aligned, the partial eclipse will goes on for more than an hour, plenty of time for this kind of shadow play.

A partial eclipse may not be total, but it is totally fun.