Small Worlds hold keys to questions about our solar system and the origin of life on Earth.
Scientists who study the solar system tend to ask big questions: How was our solar system formed? Where did the building blocks of life come from? What hazards from above threaten life on our planet? To find answers, theyre looking more and more at small worlds.
What are small worlds? Asteroids for sure. Comets too. Also the many small satellites or moons that orbit large planets as well as the icy worlds at the distance of Pluto and beyond. Some have combined, only to be broken apart later by collisions and tidal forces. Others have gone largely untouched since the dawn of the solar system. Some carry water and organic compounds, others are almost entirely composed of metal. And all hold keys to questions about our solar system and the origin of life on Earth.
Water is key to life as we know it. Learning where water is found in our solar system provides pieces to the puzzle of understanding the origins of life. New Horizons recently surprised us by discovering a large abundance of water ice at Pluto. More surprises are in store, as New Horizons transmits the data from its January 1, 2019 flyby of the Kuiper Belt object 2014 MU69 back to Earth!
Small worlds can be found in a wide range of locations across the solar system, from the inner solar system all the way out to the Kuiper Belt. When they are studied together, these remnants of the early solar system can help tell the story of solar system formation.
Dawn recently completed a mission to the Main Asteroid Belt, visiting the dwarf planet Ceres and the Belts largest asteroid, Vesta. OSIRIS-REx has arrived at Bennu, a near-Earth asteroid about 1650 feet (500 m) across, and will return to Earth in 2023 with a sample so scientists can begin to understand Bennus origin and history. The Lucy mission will be traveling to six trojan asteroids, trapped in the orbit of Jupiter. These objects are the only remaining unexplored population of small worlds in the solar system. The Psyche mission will be visiting a metal object in the Main Asteroid Belt that could be the remnant core of a proto-planet similar in size to Vesta!
While those missions travel to their individual targets, NEOWISE, a repurposed space telescope in low-Earth orbit, has made infrared measurements of hundreds of near-Earth objects and tens of thousands of other small worlds in the solar system. These diverse worlds offer insights into how our solar system formed and evolved.
This is not your grandparents solar system and things are not as orderly as we once believed.
The data weve gleaned from these objects so far have changed the way we think about the origin of the planets. For example, the small worlds in the Kuiper Belt are leading us to think that Uranus and Neptune formed much closer to the Sun than where they reside now, then gradually moved to their current orbits.
The biggest misperception about small worlds? Their distance to each other. In the movies, they always show an asteroid belt with millions of rocks almost touching each other, whereas in reality there is much more empty space. You have to travel hundreds of thousands of miles to get from one asteroid to another.
Yet scientists are also looking closer to home. Determining the orbits and physical characteristics of objects that might impact Earth is critical to understanding the consequences of any such impact; and responding to an actual impact threat, if one is ever discovered. knows of no asteroid or comet currently on a collision course with Earth. But, to prepare for that scenario is developing the Double Asteroid Redirection Test or DART mission as the first demonstration of the kinetic impact technique that could be used to change the motion of a hazardous asteroid away from Earth.
What Lies Inside The Jupiter
For four long centuries the gas giant's vast interior has remained hidden from view. JUNO probe, launched on August 5th, changed all that.
It's really hot inside Jupiter! No one knows exactly how hot, but scientists think it could be about 43,000°F (24,000°C) near Jupiter's center, or core.
Jupiter is made up almost entirely of hydrogen and helium. On the surface of Jupiter-and on Earth-those elements are gases. However inside Jupiter, hydrogen can be a liquid, or even a kind of metal.
These changes happen because of the tremendous temperatures and pressures found at the core.
What is pressure?
Have you ever gone swimming at the deep end of a pool? Did you notice that your ears started to hurt a little bit when you were under water? The deeper you dive, the more water there is on top of you. All of that water presses on your body-and that's pressure.
The same type of pressure happens in Jupiter's core. Under low pressure, particles of hydrogen and helium, called molecules, have lots of room to bounce around. This is when hydrogen and helium are gases.
However, the weight of all this hydrogen and helium is really heavy. This weight presses down toward the planet's core, creating high pressure. The molecules run out of room to bounce around, so instead, they slow down and crowd together. This creates a liquid.
How much pressure would you find at the center of Jupiter?
Imagine if you swam to the bottom of the Pacific Ocean. You would feel more than 16,000 pounds of force pressing down on every square inch of your body. That is approximately the weight of four cars!
The pressure at the center of Jupiter is much higher. At Jupiter's core, you would feel as much as 650 million pounds of pressure pressing down on every square inch of your body. That would be like having approximately 160,000 cars stacked up in every direction all over your body!
What lies at the very center of Jupiter?
At the moment, scientists aren't 100% sure. It may be that the planet has a solid core that is bigger than Earth. But some scientists think it could be more like a thick, boiling-hot soup.
JUNO mission is designed to find answers to such remaining questions about Jupiter. The spacecraft is orbiting the giant planet, swooping in for close-up looks to get more detailed information.
Juno has already made many new discoveries about Jupiter. Scientists hope that information from Juno will help us measure Jupiter's mass and figure out whether or not the giant planet's core is solid.
Worlds Within Worlds
Astronomers have discovered an immense cloud of hydrogen evaporating from a Neptune-sized planet named GJ 436b. The planet's atmosphere is evaporating because of extreme irradiation from its parent star
Astronomers using Hubble Space Telescope have discovered an immense cloud of hydrogen evaporating from a Neptune-sized planet named GJ 436b. The planet's atmosphere is evaporating because of extreme irradiation from its parent star.
About 30 light years away, a Neptune-sized planetis having some of its layers peeled back.
Astronomers using 's Hubble Space Telescope have discovered an immense cloud of hydrogen evaporating from a Neptune-sized planet named GJ 436b.
This cloud is spectacular. The research team has nicknamed it The 'Behemoth.'
The planet's atmosphere is evaporating because of extreme irradiation from its parent star-a process that might have been even more intense in the past.
The parent star, which is a faint red dwarf, was once more active. This means that the planet's atmosphere evaporated faster during its first billion years of existence. Overall, we estimate that the planet may have lost up to 10 percent of its atmosphere.
GJ 436b is considered to be a Warm Neptune because of its size and because it is much closer to its parent star than Neptune is to our own sun. Orbiting at a distance of less than 3 million miles, It whips around the central red dwarf in just 2.6 Earth days. For comparison, the Earth is 93 million miles from the sun and orbits it every 365.24 days.
Systems like GJ 436b could explain the existence of so-called Hot Super-Earths.
Hot Super-Earths are larger, hotter versions of our own planet. Space telescopes such as 's Kepler and the French led CoRoT have discovered hundredsof them orbiting distant stars. The existence of The Behemoth suggests that Hot Super-Earths could be the remnants of Warm Neptunes that completely lost their gaseous atmospheres to evaporation.
Finding a cloud around GJ 436b required Hubble's ultraviolet vision. Earth's atmosphere blocks most ultraviolet light so only a space telescope like Hubble could make the crucial observations.
You would not see The Behemoth in visible wavelengths because it is optically transparent. On the other hand, it is opaque to UV rays. So when you turn the ultraviolet eye of Hubble onto the system, it's really kind of a transformation because the planet turns into a monstrous thing.
The ultraviolet technique could be a game-changer in exoplanet studies, he adds. Ehrenreich expects that astronomers will find thousands of Warm Neptunes and Super-Earths in the years ahead. Astronomers will want to examine them for evidence of evaporation. Moreover, the ultraviolet technique might be able to spot the signature of oceans evaporating on Earth-like planets, shedding new light on worlds akin to our own.
Maybe you can't judge a book by its cover, but you can judge a planet by its Behemoth.
Close Encounter with Enceladus
NASA's Cassini Spacecraft is about to make a daring plunge through one of the plumes emerging from Saturn's moon Enceladus.
Enceladus boasts an icy, ostensibly barren landscape riddled with deep canyons, dubbed tiger stripes. Underneath its icy exterior churns a global ocean, heated in part by tidal forces from Saturn and another moon, Dione, with seafloor vents expelling water at at least 194 degrees Fahrenheit. Plumes of water vapor and icy particles jettison from its surface in geyser-like spouts, hinting that there is much more to this snowy moonscape than meets the eye.
Cassini will be soaring through the jets located at the moon's south pole, only 30 miles above the surface.
Although the October 28th flyby won't be the closest we've ever been to Enceladus, it is the closest flyby over the south pole and through the plume. We'll be exploring in situ a region of the plume that Cassini has never sampled before.
So what causes these plumes, and why are they so important? Enceladus' vast, subterranean oceans may be fizzy and full of gas. When the gas and icy particles rise to the surface, they are expelled in plumes shooting from the tiger stripes. The process is similar to shaking up a bottle of soda; the gas has nowhere to go but up and out.
However, the plumes are more than just gas and water: samples show that they also contain many of the building blocks essential to Earth-like life. This lends itself to the exciting possibility that organisms similar to those that thrive in our own deep oceans near volcanic vents exuding carbon dioxide and hydrogen sulfide might exist on Eceladus. Although it is still too early to know exactly how complex potential Enceladus' lifeforms could be, scientists speculate that at the very least microbial life is a real possibility.
In the future, a different spacecraft may journey across the solar system to visit icy Enceladus. This spacecraft, unlike Cassini, could be designed to land on Enceladus' surface, near one of its tiger stripes. Such a lander would be able to take samples more directly, bypassing the plume altogether.
Ideally, it could take samples from the edge of one of the tiger stripes, speculates Spilker. This would ensure that any microbes being expelled from Enceladus' interior would be more plentiful and easier to collect.
Until then, flybys are the best we can do. And the next one should be very good indeed. Tune in on Oct. 28th!