Astrophysics researchers who monitor the Moon for meteoroid impacts have detected the brightest explosion in the history of their program.
For the past 8 years, astronomers have been monitoring the Moon for signs of explosions caused by meteoroids hitting the lunar surface. Lunar meteor showers have turned out to be more common than anyone expected, with hundreds of detectable impacts occurring every year.
They've just seen the biggest explosion in the history of the program.
On March 17, 2013, an object about the size of a small boulder hit the lunar surface in Mare Imbrium. It exploded in a flash nearly 10 times as bright as anything we've ever seen before.
Anyone looking at the Moon at the moment of impact could have seen the explosion--no telescope required. For about one second, the impact site was glowing like a 4th magnitude star.
Ron Suggs, an analyst at the Marshall Space Flight Center, was the first to notice the impact in a digital video recorded by one of the monitoring program's 14-inch telescopes. It jumped right out at me, it was so bright, he recalls.
The 40 kg meteoroid measuring 0.3 to 0.4 meters wide hit the Moon traveling 56,000 mph. The resulting explosion1 packed as much punch as 5 tons of TNT.
The lunar impact might have been part of a much larger event.
On the night of March 17, University of Western Ontario all-sky cameras picked up an unusual number of deep-penetrating meteors right here on Earth. These fireballs were traveling along nearly identical orbits between Earth and the asteroid belt.
This means Earth and the Moon were pelted by meteoroids at about the same time.
"My working hypothesis is that the two events are related, and that this constitutes a short duration cluster of material encountered by the Earth-Moon system.
One of the goals of the lunar monitoring program is to identify new streams of space debris that pose a potential threat to the Earth-Moon system. The March 17th event seems to be a good candidate.
Controllers of Lunar Reconnaissance Orbiter have been notified of the strike. The crater could be as wide as 20 meters, which would make it an easy target for LRO the next time the spacecraft passes over the impact site. Comparing the size of the crater to the brightness of the flash would give researchers a valuable ground truth measurement to validate lunar impact models.
Unlike Earth, which has an atmosphere to protect it, the Moon is airless and exposed. Lunar meteors crash into the ground with fair frequency. Since the monitoring program began in 2005, astronomers associated with lunar impact has detected more than 300 strikes, most orders of magnitude fainter than the March 17th event. Statistically speaking, more than half of all lunar meteors come from known meteoroid streams such as the Perseids and Leonids. The rest are sporadic meteors--random bits of comet and asteroid debris of unknown parentage.
U.S. Space Exploration Policy eventually calls for extended astronaut stays on the lunar surface. Identifying the sources of lunar meteors and measuring their impact rates gives future lunar explorers an idea of what to expect. Is it safe to go on a moonwalk, or not? The middle of March might be a good time to stay inside.
We'll be keeping an eye out for signs of a repeat performance next year when the Earth-Moon system passes through the same region of space. "Meanwhile, our analysis of the March 17th event continues."
The Moon has no oxygen atmosphere, so how can something explode? Lunar meteors don't require oxygen or combustion to make themselves visible. They hit the ground with so much kinetic energy that even a pebble can make a crater several feet wide. The flash of light comes not from combustion but rather from the thermal glow of molten rock and hot vapors at the impact site.
Close Encounter with Enceladus
NASA's Cassini Spacecraft is about to make a daring plunge through one of the plumes emerging from Saturn's moon Enceladus.
Enceladus boasts an icy, ostensibly barren landscape riddled with deep canyons, dubbed tiger stripes. Underneath its icy exterior churns a global ocean, heated in part by tidal forces from Saturn and another moon, Dione, with seafloor vents expelling water at at least 194 degrees Fahrenheit. Plumes of water vapor and icy particles jettison from its surface in geyser-like spouts, hinting that there is much more to this snowy moonscape than meets the eye.
Cassini will be soaring through the jets located at the moon's south pole, only 30 miles above the surface.
Although the October 28th flyby won't be the closest we've ever been to Enceladus, it is the closest flyby over the south pole and through the plume. We'll be exploring in situ a region of the plume that Cassini has never sampled before.
So what causes these plumes, and why are they so important? Enceladus' vast, subterranean oceans may be fizzy and full of gas. When the gas and icy particles rise to the surface, they are expelled in plumes shooting from the tiger stripes. The process is similar to shaking up a bottle of soda; the gas has nowhere to go but up and out.
However, the plumes are more than just gas and water: samples show that they also contain many of the building blocks essential to Earth-like life. This lends itself to the exciting possibility that organisms similar to those that thrive in our own deep oceans near volcanic vents exuding carbon dioxide and hydrogen sulfide might exist on Eceladus. Although it is still too early to know exactly how complex potential Enceladus' lifeforms could be, scientists speculate that at the very least microbial life is a real possibility.
In the future, a different spacecraft may journey across the solar system to visit icy Enceladus. This spacecraft, unlike Cassini, could be designed to land on Enceladus' surface, near one of its tiger stripes. Such a lander would be able to take samples more directly, bypassing the plume altogether.
Ideally, it could take samples from the edge of one of the tiger stripes, speculates Spilker. This would ensure that any microbes being expelled from Enceladus' interior would be more plentiful and easier to collect.
Until then, flybys are the best we can do. And the next one should be very good indeed. Tune in on Oct. 28th!
The Sounds Of The InterStellar Space
As Voyager 1 recedes from the solar system, researchers are listening for interstellar music (plasma waves) to learn more about conditions outside the heliosphere.
Scifi movies are sometimes criticized when explosions in the void make noise. As the old saying goes, in space, no one can hear you scream. Without air there is no sound.
But if that's true, the sounds of interstellar space were heard by astronomers?
It turns out that space can make music - if you know how to listen.
Some plasma wave data was played for astronomers and The sounds were solid evidence that Voyager 1 had left the heliosphere.
The heliosphere is a vast bubble of magnetism that surrounds the sun and planets. It is, essentially, the sun's magnetic field inflated to enormous proportions by the solar wind. Inside the heliosphere is home. Outside lies interstellar space, the realm of the stars
For decades, researchers have been on the edge of their seats, waiting for the Voyager probes to leave. Ironically, it took almost a year to realize the breakthrough had occurred. The reason is due to the slow cadence of transmissions from the distant spacecraft. Data stored on old-fashioned tape recorders are played back at three to six month intervals. Then it takes more time to process the readings.
The thrill of discovery when some months-old data from the Plasma Wave Instrument reached his desk in the summer of 2013. The distant tones were conclusive: Voyager 1 had made the crossing.
Strictly speaking, the plasma wave instrument does not detect sound. Instead it senses waves of electrons in the ionized gas or plasma that Voyager travels through. No human ear could hear these plasma waves. Nevertheless, because they occur at audio frequencies, between a few hundred and a few thousand hertz, we can play the data through a loudspeaker and listen. The pitch and frequency tell us about the density of gas surrounding the spacecraft.
When Voyager 1 was inside the heliosphere, the tones were low, around 300 Hz, typical of plasma waves coursing through the rarified solar wind. Outside, the frequency jumped to a higher pitch, between 2 and 3 kHz, corresponding to denser gas in the interstellar medium.
So far, Voyager 1 has recorded two outbursts of interstellar plasma music--one in Oct-Nov. 2012 and a second in April-May 2013. Both were excited by bursts of solar activity.
We need solar events to trigger plasma oscillations.
The key players are CMEs, hot clouds of gas that blast into space when solar magnetic fields erupt. A typical CME takes 2 or 3 days to reach Earth, and a full year or more to reach Voyager. When a CME passes through the plasma, it excites oscillations akin to fingers strumming the strings on a guitar. Voyager's Plasma Wave Instrument listens - and learns.
We're in a totally unexplored region of space and expect some surprises out there.
In particular, plasma waves are not excited by solar storms. Shock fronts from outside the solar system could be rippling through the interstellar medium. If so, they would excite new plasma waves that Voyager 1 will encounter as it plunges ever deeper into the realm of the stars.
The next sounds from out there could be surprising indeed.
Enjoying The Geminids From Above And Below
The Geminids meteor shower will be viewed from above by the Meteor camera on the International Space Station, as well as from below by sky watchers on Earth
On the night of December 13, into the morning of December 14, 2018, tune into the night sky for a dazzling display of fireballs. Thanks to the International Space Station, this sky show - the Geminids meteor shower -- will be viewed from both above and below
Sky watchers on the Earth will be sprawled flat on their backs, scanning the skies for fleeting streaks of light or meteors from small particles or meteoroids burning up as they plunge into the atmosphere. While most of those viewers won't be pondering what the shooting stars are made of, astronomers and planetary scientists will be. The Meteor camera on the space station will provide clues.
Meteor records HD video from inside the Window Observational Research Facility (WORF) - looking through thehighest optical-quality window ever installed on a human space vehicle.
This camera helps scientists identify and monitor the activity of meteors, from bolides, extremely bright meteors that typically explode in the atmosphere, to much fainter ones not visible to the naked eye. The camera is equipped with a diffraction grating, an optical component that allows incoming light to be split into selected visible wavelengths of light that are signatures of various elements (Iron, Sodium, Calcium, and Magnesium). By measuring a spectrum or chemical fingerprint from the meteor, the presence of these elements is revealed.
Meteor Science Principal Investigator Tomoko Arai of the Chiba Institute of Technology in Japan says, Our observations focus on annual meteor showers, such as Geminids and Perseids, because their meteoroids originated from known comets or asteroids, so-called meteor showers' parent bodies. The spectral information will tell us the chemical makeup of meteoroids and of their parent bodies. This can help us understand their origin and evolution.
The instrument also helps improve estimates of how much material actually enters Earth's atmosphere. Findings could help mission planners protect spacecraft and Earth from potential collisions with meteoroids.
So what parent body spawns the debris that results in the dazzling Geminids?
Many researchers hypothesize that they are related to a rocky asteroid known as 3200 Phaethon, which passes closer to the sun than any other named asteroid.Phaethon may be a rock-comet-a dormant comet that has accumulated a thick mantle of interplanetary dust grains that can slough off as the comet nears the sun. Phaethon may be an asteroid that was once rich in ice and organics like comets, originally located in the main asteroid belt, which has become active as its orbit has evolved closer to the Sun.
Another possible explanation for the Geminids source is as follows:
There is another object - Apollo asteroid 2005 UD - that seems to be dynamically related to Phaethon and has physical similarities.Some researchers believe that 2005 UD, 3200 Phaethon, and the massive amounts of debris that cause the Geminids are all products of a larger object that has broken apart.
Researchers continue to debate the cosmic drama underlying the Geminids.
Best viewing is Friday morning around 2 AM your local time, after moonset. In the suburbs you could see around 40-50 meteors per hour. Under ideal conditions you could see about 100 meteors per hour! Darker is always better when viewing meteor showers.