On October 23rd, 2014, the Moon will pass in front of the sun, off-center, producing a partial solar eclipse visible in most of the United States
Sunsets are always pretty. One sunset this month could be out of this world. On Thursday, Oct. 23rd, the setting sun across eastern parts of the USA will be red, beautiful and - crescent-shaped.
It's a partial solar eclipse. In other words, the New Moon is going to 'take a bite' out of the sun.
A total eclipse is when the Moon passes directly in front of the sun, completely hiding the solar disk and allowing the sun's ghostly corona to spring into view. A partial eclipse is when the Moon passes in front of the sun, off-center, with a fraction of the bright disk remaining uncovered.
The partial eclipse of Oct. 23rd will be visible from all of the United States except Hawaii and New England. Coverage ranges from 12% in Florida to nearly 70% in Alaska. Weather permitting, almost everyone in North America will be able to see the crescent.
The eclipse will be especially beautiful in eastern parts of the USA, where the Moon and sun line up at the end of the day, transforming the usual sunset into something weird and wonderful.
Observers in the Central Time zone have the best view because the eclipse is in its maximum phase at sunset. They will see a fiery crescent sinking below the horizon, dimmed to human visibility by low-hanging clouds and mist.
Warning: Don't stare. Even at maximum eclipse, a sliver of sun peeking out from behind the Moon can still cause pain and eye damage. Direct viewing should only be attempted with the aid of a safe solar filter.
During the eclipse, don't forget to look at the ground. Beneath a leafy tree, you might be surprised to find hundreds of crescent-shaped sunbeams dappling the grass. Overlapping leaves create a myriad of natural little pinhole cameras, each one casting an image of the crescent-sun onto the ground beneath the canopy. When the eclipsed sun approaches the horizon, look for the same images cast on walls or fences behind the trees.
Here's another trick: Criss-cross your fingers waffle-style and let the sun shine through the matrix of holes. You can cast crescent suns on sidewalks, driveways, friends, cats and dogs-you name it. Unlike a total eclipse, which lasts no more than a few minutes while the sun and Moon are perfectly aligned, the partial eclipse will goes on for more than an hour, plenty of time for this kind of shadow play.
A partial eclipse may not be total, but it is totally fun.
Space-Time Vortex Around The Earth
MXPlank shows the results of an epic physics experiment which confirms the reality of a space-time vortex around our planet.
Is Earth in a vortex of space-time?
A Stanford physics experiment called Gravity Probe B (GP-B) recently finished a year of gathering science data in Earth orbit. The results, which will take another year to analyze, should reveal the shape of space-time around Earth--and, possibly, the vortex.
Time and space, according to Einstein's theories of relativity, are woven together, forming a four-dimensional fabric called "space-time." The tremendous mass of Earth dimples this fabric, much like a heavy person sitting in the middle of a trampoline. Gravity, says Einstein, is simply the motion of objects following the curvaceous lines of the dimple.
If Earth were stationary, that would be the end of the story. But Earth is not stationary. Our planet spins, and the spin should twist the dimple, slightly, pulling it around into a 4-dimensional swirl. This is what GP-B went to space to check
The idea behind the experiment is simple:
Put a spinning gyroscope into orbit around the Earth, with the spin axis pointed toward some distant star as a fixed reference point. Free from external forces, the gyroscope's axis should continue pointing at the star--forever. But if space is twisted, the direction of the gyroscope's axis should drift over time. By noting this change in direction relative to the star, the twists of space-time could be measured.
In practice, the experiment is tremendously difficult.
The four gyroscopes in GP-B are the most perfect spheres ever made by humans. These ping pong-sized balls of fused quartz and silicon are 1.5 inches across and never vary from a perfect sphere by more than 40 atomic layers. If the gyroscopes weren't so spherical, their spin axes would wobble even without the effects of relativity.
According to calculations, the twisted space-time around Earth should cause the axes of the gyros to drift merely 0.041 arcseconds over a year. An arcsecond is 1/3600th of a degree. To measure this angle reasonably well, GP-B needed a fantastic precision of 0.0005 arcseconds. It's like measuring the thickness of a sheet of paper held edge-on 100 miles away.
GP-B researchers invented whole new technologies to make this possible. They developed a "drag free" satellite that could brush against the outer layers of Earth's atmosphere without disturbing the gyros. They figured out how to keep Earth's penetrating magnetic field out of the spacecraft. And they concocted a device to measure the spin of a gyro--without touching the gyro.
Pulling off the experiment was an exceptional challenge. A lot of time and money was on the line, but the GP-B scientists appear to have done it.
"There were not any major surprises" in the experiment's performance, says physics professor Francis Everitt, the Principal Investigator for GP-B at Stanford University. Now that data-taking is complete, he says the mood among the GP-B scientists is "a lot of enthusiasm, and a realization also that a lot of grinding hard work is ahead of us."
A careful, thorough analysis of the data is underway. The scientists will do it in three stages, Everitt explains. First, they will look at the data from each day of the year-long experiment, checking for irregularities. Next they'll break the data into roughly month-long chunks, and finally they'll look at the whole year. By doing it this way, the scientists should be able to find any problems that a more simple analysis might miss.
Eventually scientists around the world will scrutinize the data. Says Everitt, "we want our sternest critics to be us."
The stakes are high. If they detect the vortex, precisely as expected, it simply means that Einstein was right, again. But what if they don't? There might be a flaw in Einstein's theory, a tiny discrepancy that heralds a revolution in physics.
First, though, there are a lot of data to analyze. Stay tuned.
Earth Day Meteor Shower
At the end of a day devoted to Earth, people can look to the heavens for a beautiful shower of Lyrid meteors.
On April 22nd 2015, millions of people around the world will gather together at festivals and other events to celebrate our beautiful blue planet. It's Earth Day, an occasion to pause, reflect, and talk about how to sustain a clean, healthy environment on Earth.
This year, Earth Day will end with a meteor shower.
On April 22-23 ,2015, Earth will pass through a stream of debris from Comet Thatcher, source of the annual Lyrid meteor shower.
As Earth crosses the debris zone, flakes of comet dust, most no bigger than grains of sand, strike Earth's atmosphere traveling 49 km/s (110,000 mph) and disintegrate as streaks of light. Typical Lyrids are about as bright as the stars of the Big Dipper
As meteor showers go, the Lyrids are relatively mild. Most years in April there are no more than 10 to 20 Lyrid meteors per hour. But sometimes, when Earth glides through an unusually dense clump of debris from Comet Thatcher, the rate increases, resulting in what is known as a meteor outburst. Sky watchers in 1982, for instance, counted 90 Lyrids per hour. An even more impressive outburst was documented in 1803 by a journalist in Richmond, Virginia, who wrote:
"Shooting stars [were] observed on Wednesday morning last at Richmond and its vicinity, in a manner that alarmed many, and astonished every person that beheld it. From one until three in the morning, those starry meteors seemed to fall from every point in the heavens, in such numbers as to resemble a shower of sky rockets..."
Another published report from the 19th century lists an observer as having "counted 167 meteors in
about 15 minutes, and could not then number them all.
No such outburst is predicted for 2015-but then again, no outbursts were predicted on those previous occasions either. If you're up late, take a look.
The best time to catch the shower is between about 11 pm on April 22nd and sunrise on April 23rd, in any timezone in the northern hemisphere.
Observing tips: Dress warmly. Bring a reclining chair, or spread a thick blanket over a flat spot of ground. Lie down and look up. Meteors can appear in any part of the sky, although their trails will tend to point back toward the constellation Lyra, from which the meteors get their name. The hours before dawn are best, because that is when Lyra is highest in the sky.
Sometimes, bright moonlight can spoil a meteor shower. That will not be the case on April 22nd. The Moon is just a slender crescent, and it sets shortly after sunset, so lunar glare will not interfere with the Lyrids. If you can, get away from city lights for the darkest possible sky and the best possible show.
Enjoy Earth Day. And then enjoy Earth Night even more.
Effects Of The Solar Wind
The wind speed of a devastating Category 5 hurricane can top over 150 miles per hour (241km/hour.) Now imagine another kind of wind with an average speed of 0.87 million miles per hour (1.4 million km/hour.)
Welcome to the wind that begins in our Sun and doesn't stop until after it reaches the edge of the heliosphere: the solar wind.
The corona is the Sun's inner atmosphere - the brightness that can be seen surrounding an eclipsed Sun - and home to the continually expanding solar wind. Right now, the Parker Solar Probe - launched in 2018, is orbiting the Sun and will get as close as 3.83 million miles (6.16 million km) of the Sun's surface. Parker is gathering new data about the solar particles and magnetic fields that comprise the solar wind. More specifically, two of its main goals are to examine the energy that heats the corona and speeds up the solar wind, and determine the structure of the wind's magnetic fields.
While many theories describe the solar wind's history, this is what we do know: The solar wind impacting Earth's magnetosphere is responsible for triggering those majestic auroras typically seen at locations close to our north and south poles. In some cases it can also set off space weather storms that disrupt everything from our satellites in space, to ship communications on our oceans, to power grids on land.
To say in more detail , how the solar wind disrupts our magnetosphere: As the wind flows toward Earth, it carries with it the Sun's magnetic field. It moves very fast, then smacks right into Earth's magnetic field. The blow causes a shock to our magnetic protection, which can result in turbulence.
There is another reason to study the solar wind and its properties - the solar wind is part of a larger space weather system that can affect astronauts and technology. We not only have to ensure our astronauts are protected from the harmful effects of radiation.
We have to protect our equipment too. So, we've already found aluminum to be a good shield to protect our crafts from many energetic particles. But there are also faster particles that travel at 80% of the speed of light, which can cause havoc with parts of a spacecraft. They can smash into and damage solar panels, disrupt electronics, or affect electric currents that flow along power grids.
So, we're currently conducting tests with small pieces of technology to study how well they can survive in intense radiation areas.
Knowing more about the effects of the solar wind is not only important to those of us who live on Earth. It will be critical to know how to mitigate its effects once our astronauts travel back to the Moon and beyond for extended periods of time.
If the Sun sneezes, Earth catches a cold, because we always feel the impact of what happens on the Sun thanks to the solar wind.
Get blown away by the science behind the solar wind at MXPlank.com