Earth Day Meteor Shower
At the end of a day devoted to Earth, people can look to the heavens for a beautiful shower of Lyrid meteors.
On April 22nd 2015, millions of people around the world will gather together at festivals and other events to celebrate our beautiful blue planet. It's Earth Day, an occasion to pause, reflect, and talk about how to sustain a clean, healthy environment on Earth.
This year, Earth Day will end with a meteor shower.
On April 22-23 ,2015, Earth will pass through a stream of debris from Comet Thatcher, source of the annual Lyrid meteor shower.
As Earth crosses the debris zone, flakes of comet dust, most no bigger than grains of sand, strike Earth's atmosphere traveling 49 km/s (110,000 mph) and disintegrate as streaks of light. Typical Lyrids are about as bright as the stars of the Big Dipper
As meteor showers go, the Lyrids are relatively mild. Most years in April there are no more than 10 to 20 Lyrid meteors per hour. But sometimes, when Earth glides through an unusually dense clump of debris from Comet Thatcher, the rate increases, resulting in what is known as a meteor outburst. Sky watchers in 1982, for instance, counted 90 Lyrids per hour. An even more impressive outburst was documented in 1803 by a journalist in Richmond, Virginia, who wrote:
"Shooting stars [were] observed on Wednesday morning last at Richmond and its vicinity, in a manner that alarmed many, and astonished every person that beheld it. From one until three in the morning, those starry meteors seemed to fall from every point in the heavens, in such numbers as to resemble a shower of sky rockets..."
Another published report from the 19th century lists an observer as having "counted 167 meteors in
about 15 minutes, and could not then number them all.
No such outburst is predicted for 2015-but then again, no outbursts were predicted on those previous occasions either. If you're up late, take a look.
The best time to catch the shower is between about 11 pm on April 22nd and sunrise on April 23rd, in any timezone in the northern hemisphere.
Observing tips: Dress warmly. Bring a reclining chair, or spread a thick blanket over a flat spot of ground. Lie down and look up. Meteors can appear in any part of the sky, although their trails will tend to point back toward the constellation Lyra, from which the meteors get their name. The hours before dawn are best, because that is when Lyra is highest in the sky.
Sometimes, bright moonlight can spoil a meteor shower. That will not be the case on April 22nd. The Moon is just a slender crescent, and it sets shortly after sunset, so lunar glare will not interfere with the Lyrids. If you can, get away from city lights for the darkest possible sky and the best possible show.
Enjoy Earth Day. And then enjoy Earth Night even more.
Elucidating The Black Holes
"Black holes" is one of the most highly searched terms about our universe. There's a fascination with the idea of a region of space having a gravitational pull so strong, nothing can escape its deadly grasp, not even a sliver of light. Well, not quite. In fact, much of what we think we know about black holes turn out to be myths.
Myth 1 - All black holes are black. As the photograph below from the Event Horizon telescope demonstrated, light can be detected near a black hole's event horizon. This is the boundary between normal space and the space affected by the black hole's gravity, from which no escape is possible. Part of this light comes from the black hole's accretion disk, a flat, pancake like structure composed of dust, gas and other debris. Friction constantly moves the disk's material inward toward the event horizon. Light also comes from jet streams which propel matter outward along the disk's north and south poles.
Myth 2: All black holes are about the same size. Black holes actually come in several different sizes which are defined by their mass. Small black holes are usually the result of a relatively short and violent collapse of a star. Recent work suggests that Intermediate black holes are found in the nuclei of some active galaxies. Super massive black holes on the other hand, are found at the center of nearly every galaxy.
Dr. Dan Evans, an Astrophysicist at NASA Headquarters says, "There's a direct relationship between the beginning of super massive black holes and the beginning of their corresponding galaxy. This strongly suggests the two were born about the same time and slowly grew in size together over billions of years."
Myth 3: If you get within a few thousand miles of a black hole, its super gravity will pull you into its center. It turns out you can get surprisingly close to a black hole. If you approached a black hole with mass equal to our Sun's for example, you could get as close as tens of miles. So imagine if we replaced our sun with a black hole of the same mass. All of the planets would continue to revolve around it, at exactly the same speed and distance as they do now.
Myth 4: Once inside a black hole, nothing ever comes out. Nope. It turns out that radiation can escape from a black hole. One of Stephen Hawking's contributions was a theory that a black hole is not so dense in a quantum mechanical sense. The slow leak of what's now known as Hawking radiation would, over time, cause the black hole to simply evaporate.
The image from the Event Horizon telescope confirmed what Albert Einstein's general theory of relativity predicted over 100 years ago - that a black hole's form is that of a perfect circle. And as scientists learn even more about the properties of this gigantic cosmic mystery we call a black hole, they'll be able to puncture even more myths.