Close Encounter with Enceladus
NASA's Cassini Spacecraft is about to make a daring plunge through one of the plumes emerging from Saturn's moon Enceladus.
Enceladus boasts an icy, ostensibly barren landscape riddled with deep canyons, dubbed tiger stripes. Underneath its icy exterior churns a global ocean, heated in part by tidal forces from Saturn and another moon, Dione, with seafloor vents expelling water at at least 194 degrees Fahrenheit. Plumes of water vapor and icy particles jettison from its surface in geyser-like spouts, hinting that there is much more to this snowy moonscape than meets the eye.
Cassini will be soaring through the jets located at the moon's south pole, only 30 miles above the surface.
Although the October 28th flyby won't be the closest we've ever been to Enceladus, it is the closest flyby over the south pole and through the plume. We'll be exploring in situ a region of the plume that Cassini has never sampled before.
So what causes these plumes, and why are they so important? Enceladus' vast, subterranean oceans may be fizzy and full of gas. When the gas and icy particles rise to the surface, they are expelled in plumes shooting from the tiger stripes. The process is similar to shaking up a bottle of soda; the gas has nowhere to go but up and out.
However, the plumes are more than just gas and water: samples show that they also contain many of the building blocks essential to Earth-like life. This lends itself to the exciting possibility that organisms similar to those that thrive in our own deep oceans near volcanic vents exuding carbon dioxide and hydrogen sulfide might exist on Eceladus. Although it is still too early to know exactly how complex potential Enceladus' lifeforms could be, scientists speculate that at the very least microbial life is a real possibility.
In the future, a different spacecraft may journey across the solar system to visit icy Enceladus. This spacecraft, unlike Cassini, could be designed to land on Enceladus' surface, near one of its tiger stripes. Such a lander would be able to take samples more directly, bypassing the plume altogether.
Ideally, it could take samples from the edge of one of the tiger stripes, speculates Spilker. This would ensure that any microbes being expelled from Enceladus' interior would be more plentiful and easier to collect.
Until then, flybys are the best we can do. And the next one should be very good indeed. Tune in on Oct. 28th!
The Sounds Of The InterStellar Space
As Voyager 1 recedes from the solar system, researchers are listening for interstellar music (plasma waves) to learn more about conditions outside the heliosphere.
Scifi movies are sometimes criticized when explosions in the void make noise. As the old saying goes, in space, no one can hear you scream. Without air there is no sound.
But if that's true, the sounds of interstellar space were heard by astronomers?
It turns out that space can make music - if you know how to listen.
Some plasma wave data was played for astronomers and The sounds were solid evidence that Voyager 1 had left the heliosphere.
The heliosphere is a vast bubble of magnetism that surrounds the sun and planets. It is, essentially, the sun's magnetic field inflated to enormous proportions by the solar wind. Inside the heliosphere is home. Outside lies interstellar space, the realm of the stars
For decades, researchers have been on the edge of their seats, waiting for the Voyager probes to leave. Ironically, it took almost a year to realize the breakthrough had occurred. The reason is due to the slow cadence of transmissions from the distant spacecraft. Data stored on old-fashioned tape recorders are played back at three to six month intervals. Then it takes more time to process the readings.
The thrill of discovery when some months-old data from the Plasma Wave Instrument reached his desk in the summer of 2013. The distant tones were conclusive: Voyager 1 had made the crossing.
Strictly speaking, the plasma wave instrument does not detect sound. Instead it senses waves of electrons in the ionized gas or plasma that Voyager travels through. No human ear could hear these plasma waves. Nevertheless, because they occur at audio frequencies, between a few hundred and a few thousand hertz, we can play the data through a loudspeaker and listen. The pitch and frequency tell us about the density of gas surrounding the spacecraft.
When Voyager 1 was inside the heliosphere, the tones were low, around 300 Hz, typical of plasma waves coursing through the rarified solar wind. Outside, the frequency jumped to a higher pitch, between 2 and 3 kHz, corresponding to denser gas in the interstellar medium.
So far, Voyager 1 has recorded two outbursts of interstellar plasma music--one in Oct-Nov. 2012 and a second in April-May 2013. Both were excited by bursts of solar activity.
We need solar events to trigger plasma oscillations.
The key players are CMEs, hot clouds of gas that blast into space when solar magnetic fields erupt. A typical CME takes 2 or 3 days to reach Earth, and a full year or more to reach Voyager. When a CME passes through the plasma, it excites oscillations akin to fingers strumming the strings on a guitar. Voyager's Plasma Wave Instrument listens - and learns.
We're in a totally unexplored region of space and expect some surprises out there.
In particular, plasma waves are not excited by solar storms. Shock fronts from outside the solar system could be rippling through the interstellar medium. If so, they would excite new plasma waves that Voyager 1 will encounter as it plunges ever deeper into the realm of the stars.
The next sounds from out there could be surprising indeed.