Connecting To The Server To Fetch The WebPage Elements!!....
MXPlank.com MXMail Submit Research Thesis Electronics - MicroControllers Contact us QuantumDDX.com




Search The Site






MXPlank Science-Casts News Letter - 2021-06-01




Mars Landing Sky Show


Since astronomers discovered that the stars in the sky are other suns, humanity has wondered if they are also orbited by planets and if those planets host alien life. Since the discovery of the first exoplanet only 25 years ago Hubble is among the many instruments trying to answer these questions. This new Hubblecast tells the story of what we know so far and what we can hope for in the future









Bright Explosion on the Moon


Astrophysics researchers who monitor the Moon for meteoroid impacts have detected the brightest explosion in the history of their program.

For the past 8 years, astronomers have been monitoring the Moon for signs of explosions caused by meteoroids hitting the lunar surface. Lunar meteor showers have turned out to be more common than anyone expected, with hundreds of detectable impacts occurring every year.

They've just seen the biggest explosion in the history of the program.

On March 17, 2013, an object about the size of a small boulder hit the lunar surface in Mare Imbrium. It exploded in a flash nearly 10 times as bright as anything we've ever seen before.

Anyone looking at the Moon at the moment of impact could have seen the explosion--no telescope required. For about one second, the impact site was glowing like a 4th magnitude star.

Ron Suggs, an analyst at the Marshall Space Flight Center, was the first to notice the impact in a digital video recorded by one of the monitoring program's 14-inch telescopes. It jumped right out at me, it was so bright, he recalls.

The 40 kg meteoroid measuring 0.3 to 0.4 meters wide hit the Moon traveling 56,000 mph. The resulting explosion1 packed as much punch as 5 tons of TNT.

The lunar impact might have been part of a much larger event.

On the night of March 17, University of Western Ontario all-sky cameras picked up an unusual number of deep-penetrating meteors right here on Earth. These fireballs were traveling along nearly identical orbits between Earth and the asteroid belt.

This means Earth and the Moon were pelted by meteoroids at about the same time.

"My working hypothesis is that the two events are related, and that this constitutes a short duration cluster of material encountered by the Earth-Moon system.

One of the goals of the lunar monitoring program is to identify new streams of space debris that pose a potential threat to the Earth-Moon system. The March 17th event seems to be a good candidate.

Controllers of Lunar Reconnaissance Orbiter have been notified of the strike. The crater could be as wide as 20 meters, which would make it an easy target for LRO the next time the spacecraft passes over the impact site. Comparing the size of the crater to the brightness of the flash would give researchers a valuable ground truth measurement to validate lunar impact models.

Unlike Earth, which has an atmosphere to protect it, the Moon is airless and exposed. Lunar meteors crash into the ground with fair frequency. Since the monitoring program began in 2005, astronomers associated with lunar impact has detected more than 300 strikes, most orders of magnitude fainter than the March 17th event. Statistically speaking, more than half of all lunar meteors come from known meteoroid streams such as the Perseids and Leonids. The rest are sporadic meteors--random bits of comet and asteroid debris of unknown parentage.

U.S. Space Exploration Policy eventually calls for extended astronaut stays on the lunar surface. Identifying the sources of lunar meteors and measuring their impact rates gives future lunar explorers an idea of what to expect. Is it safe to go on a moonwalk, or not? The middle of March might be a good time to stay inside.

We'll be keeping an eye out for signs of a repeat performance next year when the Earth-Moon system passes through the same region of space. "Meanwhile, our analysis of the March 17th event continues."

The Moon has no oxygen atmosphere, so how can something explode? Lunar meteors don't require oxygen or combustion to make themselves visible. They hit the ground with so much kinetic energy that even a pebble can make a crater several feet wide. The flash of light comes not from combustion but rather from the thermal glow of molten rock and hot vapors at the impact site.










Effects Of The Solar Wind


The wind speed of a devastating Category 5 hurricane can top over 150 miles per hour (241km/hour.) Now imagine another kind of wind with an average speed of 0.87 million miles per hour (1.4 million km/hour.)
Welcome to the wind that begins in our Sun and doesn't stop until after it reaches the edge of the heliosphere: the solar wind.

The corona is the Sun's inner atmosphere - the brightness that can be seen surrounding an eclipsed Sun - and home to the continually expanding solar wind. Right now, the Parker Solar Probe - launched in 2018, is orbiting the Sun and will get as close as 3.83 million miles (6.16 million km) of the Sun's surface. Parker is gathering new data about the solar particles and magnetic fields that comprise the solar wind. More specifically, two of its main goals are to examine the energy that heats the corona and speeds up the solar wind, and determine the structure of the wind's magnetic fields.

While many theories describe the solar wind's history, this is what we do know: The solar wind impacting Earth's magnetosphere is responsible for triggering those majestic auroras typically seen at locations close to our north and south poles. In some cases it can also set off space weather storms that disrupt everything from our satellites in space, to ship communications on our oceans, to power grids on land.

To say in more detail , how the solar wind disrupts our magnetosphere: As the wind flows toward Earth, it carries with it the Sun's magnetic field. It moves very fast, then smacks right into Earth's magnetic field. The blow causes a shock to our magnetic protection, which can result in turbulence.

There is another reason to study the solar wind and its properties - the solar wind is part of a larger space weather system that can affect astronauts and technology. We not only have to ensure our astronauts are protected from the harmful effects of radiation. We have to protect our equipment too. So, we've already found aluminum to be a good shield to protect our crafts from many energetic particles. But there are also faster particles that travel at 80% of the speed of light, which can cause havoc with parts of a spacecraft. They can smash into and damage solar panels, disrupt electronics, or affect electric currents that flow along power grids. So, we're currently conducting tests with small pieces of technology to study how well they can survive in intense radiation areas.

Knowing more about the effects of the solar wind is not only important to those of us who live on Earth. It will be critical to know how to mitigate its effects once our astronauts travel back to the Moon and beyond for extended periods of time.

If the Sun sneezes, Earth catches a cold, because we always feel the impact of what happens on the Sun thanks to the solar wind.

Get blown away by the science behind the solar wind at
MXPlank.com










The Diner At The Center Of The Galaxy


Deep in the heart of the spiral Milky Way galaxy, a hot vortex of matter swirls around a black hole more than a million times as massive as the sun.
Many galaxies, perhaps all, contain such a monster in the middle. These supermassive black holes sustain themselves by swallowing stars, planets, asteroids, comets and clouds of gas that wander by the crowded galactic core